Summary
Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral. The images of a chosen fundamental domain under the group action then tile the space. One general construction of fundamental domains uses Voronoi cells. Given an action of a group G on a topological space X by homeomorphisms, a fundamental domain for this action is a set D of representatives for the orbits. It is usually required to be a reasonably nice set topologically, in one of several precisely defined ways. One typical condition is that D is almost an open set, in the sense that D is the symmetric difference of an open set in X with a set of measure zero, for a certain (quasi)invariant measure on X. A fundamental domain always contains a free regular set U, an open set moved around by G into disjoint copies, and nearly as good as D in representing the orbits. Frequently D is required to be a complete set of coset representatives with some repetitions, but the repeated part has measure zero. This is a typical situation in ergodic theory. If a fundamental domain is used to calculate an integral on X/G, sets of measure zero do not matter. For example, when X is Euclidean space Rn of dimension n, and G is the lattice Zn acting on it by translations, the quotient X/G is the n-dimensional torus. A fundamental domain D here can be taken to be [0,1)n, which differs from the open set (0,1)n by a set of measure zero, or the closed unit cube [0,1]n, whose boundary consists of the points whose orbit has more than one representative in D. Examples in the three-dimensional Euclidean space R3.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.