In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical evaluation and implementation on digital computers. Dichotomization is the special case of discretization in which the number of discrete classes is 2, which can approximate a continuous variable as a binary variable (creating a dichotomy for modeling purposes, as in binary classification).
Discretization is also related to discrete mathematics, and is an important component of granular computing. In this context, discretization may also refer to modification of variable or category granularity, as when multiple discrete variables are aggregated or multiple discrete categories fused.
Whenever continuous data is discretized, there is always some amount of discretization error. The goal is to reduce the amount to a level considered negligible for the modeling purposes at hand.
The terms discretization and quantization often have the same denotation but not always identical connotations. (Specifically, the two terms share a semantic field.) The same is true of discretization error and quantization error.
Mathematical methods relating to discretization include the Euler–Maruyama method and the zero-order hold.
Discretization is also concerned with the transformation of continuous differential equations into discrete difference equations, suitable for numerical computing.
The following continuous-time state space model
where v and w are continuous zero-mean white noise sources with power spectral densities
can be discretized, assuming zero-order hold for the input u and continuous integration for the noise v, to
with covariances
where
if is nonsingular
and is the sample time, although is the transposed matrix of . The equation for the discretized measurement noise is a consequence of the continuous measurement noise being defined with a power spectral density.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
Ce cours poursuit la compréhension des effets cinématiques et dynamiques de systèmes mécaniques complexes et introduit les bases pour les comprendre et les modéliser. L'étudiant saura expliquer et mod
Ce cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides.Les concepts fondamentaux sont présentés dans le cadre de la méthode d
Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models.
In mathematics, time-scale calculus is a unification of the theory of difference equations with that of differential equations, unifying integral and differential calculus with the calculus of finite differences, offering a formalism for studying hybrid systems. It has applications in any field that requires simultaneous modelling of discrete and continuous data. It gives a new definition of a derivative such that if one differentiates a function defined on the real numbers then the definition is equivalent to standard differentiation, but if one uses a function defined on the integers then it is equivalent to the forward difference operator.
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
When generating in-silico clinical electrophysiological outputs, such as electrocardiograms (ECGs) and body surface potential maps (BSPMs), mathematical models have relied on single physics, i.e. of the cardiac electrophysiology (EP), neglecting the role o ...
A space-time adaptive algorithm is presented to solve the incompressible Navier-Stokes equations. Time discretization is performed with the BDF2 method while continuous, piecewise linear anisotropic finite elements are used for the space discretization. Th ...
In this paper we will consider distributed Linear-Quadratic Optimal Control Problems dealing with Advection-Diffusion PDEs for high values of the Peclet number. In this situation, computational instabilities occur, both for steady and unsteady cases. A Str ...