Gödel numberingIn mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of his incompleteness theorems. () A Gödel numbering can be interpreted as an encoding in which a number is assigned to each symbol of a mathematical notation, after which a sequence of natural numbers can then represent a sequence of symbols.
Halting problemIn computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. A key part of the formal statement of the problem is a mathematical definition of a computer and program, usually via a Turing machine.
Recursively enumerable languageIn mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language. Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages.
Computable functionComputable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines.
Computable setIn computability theory, a set of natural numbers is called computable, recursive, or decidable if there is an algorithm which takes a number as input, terminates after a finite amount of time (possibly depending on the given number) and correctly decides whether the number belongs to the set or not. A set which is not computable is called noncomputable or undecidable. A more general class of sets than the computable ones consists of the computably enumerable (c.e.) sets, also called semidecidable sets.
Arithmetical hierarchyIn mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946). The arithmetical hierarchy is important in computability theory, effective descriptive set theory, and the study of formal theories such as Peano arithmetic.
Computability theoryComputability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory.
Primitive recursive functionIn computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop can be determined before entering the loop). Primitive recursive functions form a strict subset of those general recursive functions that are also total functions. The importance of primitive recursive functions lies in the fact that most computable functions that are studied in number theory (and more generally in mathematics) are primitive recursive.
Hilbert's tenth problemHilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm which, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values. For example, the Diophantine equation has an integer solution: . By contrast, the Diophantine equation has no such solution.
Turing reductionIn computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for .