Codage de GödelEn logique mathématique, un codage de Gödel (ou numérotation de Gödel) est une fonction qui attribue à chaque symbole et formule bien-formée de certains langages formels un entier naturel unique, appelé son code de Gödel, ou numéro de Gödel. Le concept a été utilisé par Kurt Gödel pour la preuve de ses théorèmes d'incomplétude. Un codage de Gödel peut être interprété comme un codage dans lequel un numéro est attribué à chaque symbole d'une notation mathématique, après quoi une séquence d'entiers naturels peut alors représenter une séquence de symboles.
Problème de l'arrêtvignette|L'animation illustre une machine impossible : il n'y a pas de machine qui lit n'importe quel code source d'un programme et dit si son exécution termine ou non. En théorie de la calculabilité, le problème de l'arrêt est le problème de décision qui détermine, à partir d'une description d'un programme informatique, et d'une entrée, si le programme s'arrête avec cette entrée ou non.
Recursively enumerable languageIn mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language. Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages.
Computable functionComputable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines.
Ensemble récursifEn théorie de la calculabilité, un ensemble récursif ou ensemble décidable est un ensemble d'entiers (ou d'éléments facilement codables dans les entiers) dont la fonction caractéristique est une fonction récursive au sens de la logique mathématique. En d'autres termes, un ensemble est récursif si, et seulement si, il existe une machine de Turing (un programme informatique) permettant de déterminer en un temps fini si un entier quelconque est dans ou pas. Ce type d'ensemble correspond à un concept effectif de John R.
Hiérarchie arithmétiquethumb|Illustration de la hiérarchie arithmétique. En logique mathématique, plus particulièrement en théorie de la calculabilité, la hiérarchie arithmétique, définie par Stephen Cole Kleene, est une hiérarchie des sous-ensembles de l'ensemble N des entiers naturels définissables dans le langage du premier ordre de l'arithmétique de Peano. Un ensemble d'entiers est classé suivant les alternances de quantificateurs d'une formule sous forme prénexe qui permet de le définir.
Théorie de la calculabilitéLa théorie de la calculabilité (appelée aussi parfois théorie de la récursion) est un domaine de la logique mathématique et de l'informatique théorique. La calculabilité (parfois appelée « computationnalité », de l'anglais computability) cherche d'une part à identifier la classe des fonctions qui peuvent être calculées à l'aide d'un algorithme et d'autre part à appliquer ces concepts à des questions fondamentales des mathématiques. Une bonne appréhension de ce qui est calculable et de ce qui ne l'est pas permet de voir les limites des problèmes que peuvent résoudre les ordinateurs.
Fonction récursive primitiveEn théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .
Dixième problème de HilbertLe dixième problème de Hilbert fait partie de la liste des 23 problèmes posés par David Hilbert en 1900 à Paris, lors de sa conférence au congrès international des mathématiciens. Il énonce : énoncé| X. — De la possibilité de résoudre une équation diophantienne. On donne une équation diophantienne à un nombre quelconque d'inconnues et à coefficients entiers rationnels : On demande de trouver une méthode par laquelle, au moyen d'un nombre fini d'opérations, on pourra distinguer si l'équation est résoluble en nombres entiers rationnels.
Turing reductionIn computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for .