Geospatial topology is the study and application of qualitative spatial relationships between geographic features, or between representations of such features in geographic information, such as in geographic information systems (GIS). For example, the fact that two regions overlap or that one contains the other are examples of topological relationships. It is thus the application of the mathematics of topology to GIS, and is distinct from, but complementary to the many aspects of geographic information that are based on quantitative spatial measurements through coordinate geometry. Topology appears in many aspects of geographic information science and GIS practice, including the discovery of inherent relationships through spatial query, vector overlay and map algebra; the enforcement of expected relationships as validation rules stored in geospatial data; and the use of stored topological relationships in applications such as network analysis.
Spatial topology is the generalization of geospatial topology for non-geographic domains, e.g., CAD software.
DE-9IM
spatial relation
In keeping with the definition of topology, a topological relationship between two geographic phenomena is any spatial relation that is not sensitive to measurable aspects of space, including transformations of space (e.g. map projection). Thus, it includes most qualitative spatial relations, such as two features being "adjacent," "overlapping," "disjoint," or one being "within" another; conversely, one feature being "5km from" another, or one feature being "due north of" another are metric relations. One of the first developments of Geographic Information Science in the early 1990s was the work of Max Egenhofer, Eliseo Clementini, Peter di Felice, and others to develop a concise theory of such relations commonly called the 9-Intersection Model, which characterizes the range of topological relationships based on the relationships between the interiors, exteriors, and boundaries of features.