In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.
Let (X, T) be a topological space and let Σ be a σ-algebra on X. Let μ be a measure on (X, Σ). A measurable subset A of X is said to be inner regular if
and said to be outer regular if
A measure is called inner regular if every measurable set is inner regular. Some authors use a different definition: a measure is called inner regular if every open measurable set is inner regular.
A measure is called outer regular if every measurable set is outer regular.
A measure is called regular if it is outer regular and inner regular.
Lebesgue measure on the real line is a regular measure: see the regularity theorem for Lebesgue measure.
Any Baire probability measure on any locally compact σ-compact Hausdorff space is a regular measure.
Any Borel probability measure on a locally compact Hausdorff space with a countable base for its topology, or compact metric space, or Radon space, is regular.
An example of a measure on the real line with its usual topology that is not outer regular is the measure μ where , , and for any other set .
The Borel measure on the plane that assigns to any Borel set the sum of the (1-dimensional) measures of its horizontal sections is inner regular but not outer regular, as every non-empty open set has infinite measure. A variation of this example is a disjoint union of an uncountable number of copies of the real line with Lebesgue measure.
An example of a Borel measure μ on a locally compact Hausdorff space that is inner regular, σ-finite, and locally finite but not outer regular is given by as follows. The topological space X has as underlying set the subset of the real plane given by the y-axis of points (0,y) together with the points (1/n,m/n2) with m,n positive integers. The topology is given as follows. The single points (1/n,m/n2) are all open sets.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
In mathematics, an inner regular measure is one for which the measure of a set can be approximated from within by compact subsets. Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on the measurable space (X, Σ) is called inner regular if, for every set A in Σ, This property is sometimes referred to in words as "approximation from within by compact sets.
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets.
We consider a random Gaussian ensemble of Laplace eigenfunctions on the 3D torus, and investigate the 1-dimensional Hausdorff measure ('length') of nodal intersections against a smooth 2-dimensional toral sub-manifold ('surface'). A prior result of ours pr ...
The forms of U-shaped UHPFRC beams have not been investigated for the highway footbridge. Compared with the traditional section forms, the U-shaped UHPFRC beams can reduce the material consumption under the condition of providing the same bearing capacity. ...
We construct a measure on the thick points of a Brownian loop soup in a bounded domain DD of the plane with given intensity theta>0θ>0, which is formally obtained by exponentiating the square root of its occupation field. The measure is construct ...