Summary
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures. A common problem is to find a good notion of a measure on a topological space that is compatible with the topology in some sense. One way to do this is to define a measure on the Borel sets of the topological space. In general there are several problems with this: for example, such a measure may not have a well defined support. Another approach to measure theory is to restrict to locally compact Hausdorff spaces, and only consider the measures that correspond to positive linear functionals on the space of continuous functions with compact support (some authors use this as the definition of a Radon measure). This produces a good theory with no pathological problems, but does not apply to spaces that are not locally compact. If there is no restriction to non-negative measures and complex measures are allowed, then Radon measures can be defined as the continuous dual space on the space of continuous functions with compact support. If such a Radon measure is real then it can be decomposed into the difference of two positive measures. Furthermore, an arbitrary Radon measure can be decomposed into four positive Radon measures, where the real and imaginary parts of the functional are each the differences of two positive Radon measures. The theory of Radon measures has most of the good properties of the usual theory for locally compact spaces, but applies to all Hausdorff topological spaces. The idea of the definition of a Radon measure is to find some properties that characterize the measures on locally compact spaces corresponding to positive functionals, and use these properties as the definition of a Radon measure on an arbitrary Hausdorff space.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

No results

Related units

No results

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading