In algebraic geometry, a line bundle on a projective variety is nef if it has nonnegative degree on every curve in the variety. The classes of nef line bundles are described by a convex cone, and the possible contractions of the variety correspond to certain faces of the nef cone. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of a nef divisor.
More generally, a line bundle L on a proper scheme X over a field k is said to be nef if it has nonnegative degree on every (closed irreducible) curve in X. (The degree of a line bundle L on a proper curve C over k is the degree of the divisor (s) of any nonzero rational section s of L.) A line bundle may also be called an invertible sheaf.
The term "nef" was introduced by Miles Reid as a replacement for the older terms "arithmetically effective" and "numerically effective", as well as for the phrase "numerically eventually free". The older terms were misleading, in view of the examples below.
Every line bundle L on a proper curve C over k which has a global section that is not identically zero has nonnegative degree. As a result, a basepoint-free line bundle on a proper scheme X over k has nonnegative degree on every curve in X; that is, it is nef. More generally, a line bundle L is called semi-ample if some positive tensor power is basepoint-free. It follows that a semi-ample line bundle is nef. Semi-ample line bundles can be considered the main geometric source of nef line bundles, although the two concepts are not equivalent; see the examples below.
A Cartier divisor D on a proper scheme X over a field is said to be nef if the associated line bundle O(D) is nef on X. Equivalently, D is nef if the intersection number is nonnegative for every curve C in X.
To go back from line bundles to divisors, the first Chern class is the isomorphism from the Picard group of line bundles on a variety X to the group of Cartier divisors modulo linear equivalence.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible".
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a linear system of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space (X, OX).
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
This hybrid format of nudging social transformative action allows virtual-global and onsite participation. Participants co-design seeds of systemic innovation for resilient and regenerative livelihood
We prove that if (X, A) is a threefold pair with mild singularities such that -(KX + A) is nef, then the numerical class of -(KX + A) is effective. ...
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...