Radiation resistance is that part of an antenna's feedpoint electrical resistance caused by the emission of radio waves from the antenna. In radio transmission, a radio transmitter is connected to an antenna. The transmitter generates a radio frequency alternating current which is applied to the antenna, and the antenna radiates the energy in the alternating current as radio waves. Because the antenna is absorbing the energy it is radiating from the transmitter, the antenna's input terminals present a resistance to the current from the transmitter.
Radiation resistance is an effective resistance, due to the power carried away from the antenna as radio waves. Unlike conventional resistance or "Ohmic resistance", radiation resistance is not due to the opposition to current (resistivity) of the imperfect conducting materials the antenna is made of.
The radiation resistance () is conventionally defined as the value of electrical resistance that would dissipate the same amount of power as heat, as is dissipated by the radio waves emitted from the antenna. From Joule's law, it is equal to the total power radiated as radio waves by the antenna, divided by the square of the current into the antenna terminals:
The feedpoint and radiation resistances are determined by the geometry of the antenna, the operating frequency, and the antenna location (particularly with respect to the ground). The relation between the feedpoint resistance () and the radiation resistance () depends on the position on the antenna at which the feedline is attached.
The relation between feedpoint resistance and radiation resistance is particularly simple when the feedpoint is placed (as usual) at the antenna's minimum possible voltage / maximum possible current point; in that case, the total feedpoint resistance at the antenna's terminals is equal to the sum of the radiation resistance plus the loss resistance due to "Ohmic" losses in the antenna and the nearby soil:
When the antenna is fed at some other point, the formula requires a correction factor discussed below.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
Ce cours a pour objectif de former les étudiants de section Génie Electrique et Electronique à la conception de systèmes acoustiques, à l'aide d'un formalisme basé sur l'électrotechnique. A la fin du
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods.
A loading coil or load coil is an inductor that is inserted into an electronic circuit to increase its inductance. The term originated in the 19th century for inductors used to prevent signal distortion in long-distance telegraph transmission cables. The term is also used for inductors in radio antennas, or between the antenna and its feedline, to make an electrically short antenna resonant at its operating frequency. The concept of loading coils was discovered by Oliver Heaviside in studying the problem of slow signalling speed of the first transatlantic telegraph cable in the 1860s.
In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.
A combination of two numerical techniques of computational electromagnetics, namely, method of moments and vector spherical wave expansion, is used to show performance limitations on the radiation efficiency of implantable antennas and to efficiently resol ...
IEEE2023
, , , , ,
One challenge in designing RF wireless bioelectronic devices is the impact of the interaction between electromagnetic waves and host body tissues on far-field wireless performance. In this paper, we investigate a peculiar phenomenon of implantable RF wirel ...
2023
,
This paper presents a broadband dual-polarized substrate integrated waveguide (SIW) slot antenna. It is analytically shown that by decreasing the permittivity of a dielectricloaded slot antenna, the resulting bandwidth increases significantly, where the wi ...