Full and faithful functorsIn , a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor. Explicitly, let C and D be () and let F : C → D be a functor from C to D. The functor F induces a function for every pair of objects X and Y in C. The functor F is said to be faithful if FX,Y is injective full if FX,Y is surjective fully faithful (= full and faithful) if FX,Y is bijective for each X and Y in C.
Sheaf (mathematics)In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).
Preadditive categoryIn mathematics, specifically in , a preadditive category is another name for an Ab-category, i.e., a that is over the , Ab. That is, an Ab-category C is a such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas: and where + is the group operation. Some authors have used the term additive category for preadditive categories, but here we follow the current trend of reserving this term for certain special preadditive categories (see below).
Hom functorIn mathematics, specifically in , hom-sets (i.e. sets of morphisms between ) give rise to important functors to the . These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Let C be a (i.e. a for which hom-classes are actually sets and not proper classes). For all objects A and B in C we define two functors to the as follows: {| class=wikitable |- ! Hom(A, –) : C → Set ! Hom(–, B) : C → Set |- | This is a covariant functor given by: Hom(A, –) maps each object X in C to the set of morphisms, Hom(A, X) Hom(A, –) maps each morphism f : X → Y to the function Hom(A, f) : Hom(A, X) → Hom(A, Y) given by for each g in Hom(A, X).
Mitchell's embedding theoremMitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about ; it essentially states that these categories, while rather abstractly defined, are in fact of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd. The precise statement is as follows: if A is a small abelian category, then there exists a ring R (with 1, not necessarily commutative) and a full, faithful and exact functor F: A → R-Mod (where the latter denotes the category of all left R-modules).
Functor represented by a schemeIn algebraic geometry, a functor represented by a scheme X is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is (up to natural bijections) the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F. The best known example is the Hilbert scheme of a scheme X (over some fixed base scheme), which, when it exists, represents a functor sending a scheme S to a flat family of closed subschemes of .