In , a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor.
Explicitly, let C and D be () and let F : C → D be a functor from C to D. The functor F induces a function
for every pair of objects X and Y in C. The functor F is said to be
faithful if FX,Y is injective
full if FX,Y is surjective
fully faithful (= full and faithful) if FX,Y is bijective
for each X and Y in C.
A faithful functor need not be injective on objects or morphisms. That is, two objects X and X′ may map to the same object in D (which is why the range of a full and faithful functor is not necessarily isomorphic to C), and two morphisms f : X → Y and f′ : X′ → Y′ (with different domains/codomains) may map to the same morphism in D. Likewise, a full functor need not be surjective on objects or morphisms. There may be objects in D not of the form FX for some X in C. Morphisms between such objects clearly cannot come from morphisms in C.
A full and faithful functor is necessarily injective on objects up to isomorphism. That is, if F : C → D is a full and faithful functor and then .
The forgetful functor U : Grp → Set maps groups to their underlying set, "forgetting" the group operation. U is faithful because two group homomorphisms with the same domains and codomains are equal if they are given by the same functions on the underlying sets. This functor is not full as there are functions between the underlying sets of groups that are not group homomorphisms. A category with a faithful functor to Set is (by definition) a ; in general, that forgetful functor is not full.
The inclusion functor Ab → Grp is fully faithful, since Ab (the ) is by definition the of Grp induced by the abelian groups.
The notion of a functor being 'full' or 'faithful' does not translate to the notion of a In an (∞, 1)-category, the maps between any two objects are given by a space only up to homotopy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
In mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
In mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
In mathematics, a concrete category is a that is equipped with a faithful functor to the (or sometimes to another category, see Relative concreteness below). This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the and the , and trivially also the category of sets itself. On the other hand, the is not concretizable, i.
The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of ...
Let K be a global field of characteristic not 2. The embedding problem for maximal tori in a classical group G can be described in terms of algebras with involution. The aim of this paper is to give an explicit description of the obstruction group to the H ...
Let K be a comonad on a model category M. We provide conditions under which the associated category of K-coalgebras admits a model category structure such that the forgetful functor to M creates both cofibrations and weak equivalences. We provide concrete ...