A real-time polymerase chain reaction (real-time PCR, or qPCR when used quantitatively) is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR (i.e., in real time), not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively (i.e., above/below a certain amount of DNA molecules).
Two common methods for the detection of PCR products in real-time PCR are (1) non-specific fluorescent dyes that intercalate with any double-stranded DNA and (2) sequence-specific DNA probes consisting of oligonucleotides that are labelled with a fluorescent reporter, which permits detection only after hybridization of the probe with its complementary sequence.
The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines propose that the abbreviation qPCR be used for quantitative real-time PCR and that RT-qPCR be used for reverse transcription–qPCR. The acronym "RT-PCR" commonly denotes reverse transcription polymerase chain reaction and not real-time PCR, but not all authors adhere to this convention.
Cells in all organisms regulate gene expression by turnover of gene transcripts (single stranded RNA): The amount of an expressed gene in a cell can be measured by the number of copies of an RNA transcript of that gene present in a sample. In order to robustly detect and quantify gene expression from small amounts of RNA, amplification of the gene transcript is necessary. The polymerase chain reaction (PCR) is a common method for amplifying DNA; for RNA-based PCR the RNA sample is first reverse-transcribed to complementary DNA (cDNA) with reverse transcriptase.
In order to amplify small amounts of DNA, the same methodology is used as in conventional PCR using a DNA template, at least one pair of specific primers, deoxyribonucleotide triphosphates, a suitable buffer solution and a thermo-stable DNA polymerase.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but de ce cours est d'apporter les connaissances et les expériences fondamentales pour comprendre les systèmes électriques et électroniques de base.
Drosophila immunity.
Give students a feel for some of the approaches pursued to understand mechanisms underlying cell division innate immunity in Drosophila.
Les étudiants appliquent des techniques de base en biologie moléculaire pour cloner un cDNA d'intérêt dans un plasmide d'expression afin de produire la protéine correspondante dans des cellules de mam
In molecular biology, a hybridization probe (HP) is a fragment of DNA or RNA of usually 15–10000 nucleotide long which can be radioactively or fluorescently labeled. HP can be used to detect the presence of nucleotide sequences in analyzed RNA or DNA that are complementary to the sequence in the probe. The labeled probe is first denatured (by heating or under alkaline conditions such as exposure to sodium hydroxide) into single stranded DNA (ssDNA) and then hybridized to the target ssDNA (Southern blotting) or RNA (northern blotting) immobilized on a membrane or in situ.
A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), from animals to plants and microorganisms.
Polymerase chain reaction (PCR) kits have been used as common diagnosing tools during the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, with daily worldwide usage in the millions. It is well known that at the beginn ...
Explores DNA replication, the genetic code, PCR applications, and forensic testing.
,
Wastewater-based epidemiology offers a complementary approach to clinical case-based surveillance of emergent diseases and can help identify regions with infected people to prioritize clinical surveillance strategies. However, tracking emergent diseases in ...
2024
Polymerase chain reaction (PCR) has been the most significant driver in the field of nucleic acid testing (NAT) since its invention. Popularized as an abbreviation by the Covid-19 pandemic, PCR-based methods are the gold standard in the field of diagnostic ...