**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Superfluidity

Summary

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium (helium-3 and helium-4) when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity. The theory of superfluidity was developed by Soviet theoretical physicists Lev Landau and Isaak Khalatnikov.
Superfluidity often co-occurs with Bose–Einstein condensation, but neither phenomenon is directly related to the other; not all Bose–Einstein condensates can be regarded as superfluids, and not all superfluids are Bose–Einstein condensates.
Superfluid helium-4
Superfluidity was discovered in helium-4 by Pyotr Kapitsa and independently by John F. Allen and Don Misener in 1937. Onnes possibly observed the superfluid phase transition on August 2 1911, the same day that he observed superconductivity in mercury. It has since been described through phenomenology and microscopic theories.
In liquid helium-4, the superfluidity occurs at far higher temperatures than it does in helium-3. Each atom of helium-4 is a boson particle, by virtue of its integer spin. A helium-3 atom is a fermion particle; it can form bosons only by pairing with another particle like itself at much lower temperatures. The discovery of superfluidity in helium-3 was the basis for the award of the 1996 Nobel Prize in Physics. This process is similar to the electron pairing in superconductivity.
Superfluidity in an ultracold fermionic gas was experimentally proven by Wolfgang Ketterle and his team who observed quantum vortices in lithium-6 at a temperature of 50 nK at MIT in April 2005. Such vortices had previously been observed in an ultracold bosonic gas using rubidium-87 in 2000, and more recently in two-dimensional gases.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (21)

Related concepts (48)

Related people (6)

Related units (3)

Second sound

Second sound is a quantum mechanical phenomenon in which heat transfer occurs by wave-like motion, rather than by the more usual mechanism of diffusion. Its presence leads to a very high thermal conductivity. It is known as "second sound" because the wave motion of entropy and temperature is similar to the propagation of pressure waves in air (sound). The phenomenon of second sound was first described by Lev Landau in 1941.

Superfluidity

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium (helium-3 and helium-4) when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity.

Macroscopic quantum phenomena

Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect and topological order. Since 2000 there has been extensive experimental work on quantum gases, particularly Bose–Einstein condensates. Between 1996 and 2016 six Nobel Prizes were given for work related to macroscopic quantum phenomena.

Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure, and lets us compute their observables, is therefore of great interest. In this thesis we explore the large quantum number sector of CFTs, by describing a semiclassical expansion approach. The idea is to describe the theory in terms of fluctuations around a classical background, which corresponds to a superfluid state of finite charge density. We detail the implementation of the method in the case of U (1)-invariant lagrangian CFTs defined in the epsilon-expansion. After introducing the method for generic correlators, we illustrate it by performing the computation of several observables.First, we compute the scaling dimension of the lowest operator having a given large charge n under the U (1) symmetry. We demonstrate how the semiclassical result in this case bridges the gap between the naive diagrammatic computation (which fails at too large n) and the general large-charge expansion of CFTs (which is only valid for n large enough).Second, we apply the method to the computation of 3- and 4-point functions involving the same operator. This lets us derive some of the OPE (Operator Product Expansion) coefficients.Finally, we consider the rest of the spectrum of charge-n operators, and propose a way to classify them by studying their free-theory equivalent. In the free theory, we construct the complete set of primary operators with number of derivatives bounded by the charge.We also find a mapping between the excited states of the superfluid and the vacuum states of standard quantization, which is valid when the spin of said states is bounded by the square root of the charge.

Related courses (3)

We study the response of a He-4 detector to the interaction of sub-GeV dark matter using an effective field theory for the superfluid. We compute the lifetime of the phonon, which agrees with what known from standard techniques, hence providing an important check of the effective field theory. We then study the process of emission of two phonons, and show how its rate is much more suppressed than the phase space expectations; this is a consequence of the conservation of the current associated to the superfluid symmetries. Talk presented at the TAUP 2019 conference.

This thesis explores the application of semiclassical methods in the study of states with large quantum numbers for theories invariant under internal symmetries.
In the first part of the thesis, we study zero-temperature superfluids. These provide a general description of many systems at finite charge density. In particular, we derive a universal effective field theory description for non-Abelian superfluids. Such construction illustrates the role of gapped Goldstones, Goldstone modes whose gap is fixed by the symmetry, and may be as large as the strong coupling scale of the system.
The second and third part of the thesis are devoted to the study of operators with large internal charge in strongly coupled conformal field theories. Using effective field theory techniques, we derive universal results for the spectrum of scaling dimensions and the OPE coefficients in a large charge expansion, both for theories invariant under Abelian and non-Abelian symmetry groups. We also extend these results to operators with large spin as well as large internal charge.
The last part of this thesis studies operators with large internal charge within the Îµ-expansion. We show how, using a semiclassical approach, one can overcome the breakdown of diagrammatic perturbation theory for the multi-legged amplitudes associated with these operators. These results provide a concrete illustration of the systematic large charge expansion discussed in the previous parts.

PHYS-426: Quantum physics IV

Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,

PHYS-619: Many-Body Approaches to Quantum Fluids

Starting from a microscopic description, the course introduces to the physics of quantum fluids focusing on basic concepts like Bose-Einstein condensation, superfluidity, and Fermi liquid theory.

MSE-438: Superconducting electronics: A materials perspective

Introduction to superconducting electronic applications and their material requirements, including the fundamental phenomenology of superconductors. Key applications and their material requirements: a

Related lectures (17)

Topological matter and its exploration with quantum gases

Explores topological matter in 2D systems, discussing unconventional phase transitions, vortices, and the ideal Bose gas.

Quantum Fluids: Investigating Ultracold Gases

Explores investigating quantum matter with ultracold gases and the quest for supersolidity.

Gauge Invariance: Electromagnetic PotentialsMSE-438: Superconducting electronics: A materials perspective

Explores gauge invariance, electromagnetic potentials, superfluid velocity, and superconductors' magnetic field expulsion.