Summary
An ecological pyramid (also trophic pyramid, Eltonian pyramid, energy pyramid, or sometimes food pyramid) is a graphical representation designed to show the biomass or bioproductivity at each trophic level in an ecosystem. A pyramid of energy shows how much energy is retained in the form of new biomass from each trophic level, while a pyramid of biomass shows how much biomass (the amount of living or organic matter present in an organism) is present in the organisms. There is also a pyramid of numbers representing the number of individual organisms at each trophic level. Pyramids of energy are normally upright, but other pyramids can be inverted(pyramid of biomass for marine region) or take other shapes.(spindle shaped pyramid) Ecological pyramids begin with producers on the bottom (such as plants) and proceed through the various trophic levels (such as herbivores that eat plants, then carnivores that eat flesh, then omnivores that eat both plants and flesh, and so on). The highest level is the top of the food chain. Biomass can be measured by a bomb calorimeter. A pyramid of energy or pyramid of productivity shows the production or turnover (the rate at which energy or mass is transferred from one trophic level to the next) of biomass at each trophic level. Instead of showing a single snapshot in time, productivity pyramids show the flow of energy through the food chain. Typical units are grams per square meter per year or calories per square meter per year. As with the others, this graph shows producers at the bottom and higher trophic levels on top. When an ecosystem is healthy, this graph produces a standard ecological pyramid. This is because, in order for the ecosystem to sustain itself, there must be more energy at lower trophic levels than there is at higher trophic levels. This allows organisms on the lower levels to not only maintain a stable population, but also to transfer energy up the pyramid. The exception to this generalization is when portions of a food web are supported by inputs of resources from outside the local community.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (2)
MSE-474: Materials selection
Propose suitable materials, design, and production routes depending on different performance criteria using a computer based software approach. The course is based on Prof. Mike Ashby's well known "As
CIVIL-312: Hydraulic structures and schemes
Les aménagements hydrauliques sont indispensable pour garantir l'approvisionnement en énergie écophile et renouvelable, de même que l'approvisionnement en eau de bonne qualité et en quantité suffisant
Related publications (40)