Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Question answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing (NLP) that is concerned with building systems that automatically answer questions that are posed by humans in a natural language. A question-answering implementation, usually a computer program, may construct its answers by querying a structured database of knowledge or information, usually a knowledge base. More commonly, question-answering systems can pull answers from an unstructured collection of natural language documents. Some examples of natural language document collections used for question answering systems include: a collection of reference texts internal organization documents and web pages compiled newswire reports a set of Wikipedia pages a subset of World Wide Web pages Question-answering research attempts to develop ways of answering a wide range of question types, including fact, list, definition, how, why, hypothetical, semantically constrained, and cross-lingual questions. Answering questions related to an article in order to evaluate reading comprehension is one of the simpler form of question answering, since a given article is relatively short compared to the domains of other types of question-answering problems. An example of such a question is "What did Albert Einstein win the Nobel Prize for?" after an article about this subject is given to the system. Closed-book question answering is when a system has memorized some facts during training and can answer questions without explicitly being given a context. This is similar to humans taking closed-book exams. Closed-domain question answering deals with questions under a specific domain (for example, medicine or automotive maintenance) and can exploit domain-specific knowledge frequently formalized in ontologies. Alternatively, "closed-domain" might refer to a situation where only a limited type of questions are accepted, such as questions asking for descriptive rather than procedural information.
Devis Tuia, Sylvain Lobry, Christel Marie Tartini-Chappuis, Javiera Francisca Castillo Navarro, Nicola Antonio Santacroce
Vinitra Swamy, Jibril Albachir Frej, Paola Mejia Domenzain, Luca Zunino, Tommaso Martorella, Elena Grazia Gado