Brain connectivity estimators represent patterns of links in the brain. Connectivity can be considered at different levels of the brain's organisation: from neurons, to neural assemblies and brain structures. Brain connectivity involves different concepts such as: neuroanatomical or structural connectivity (pattern of anatomical links), functional connectivity (usually understood as statistical dependencies) and effective connectivity (referring to causal interactions).
Neuroanatomical connectivity is inherently difficult to define given the fact that at the microscopic scale of neurons, new synaptic connections or elimination of existing ones are formed dynamically and are largely dependent on the function executed, but may be considered as pathways extending over regions of the brain, which are in accordance with general anatomical knowledge. Diffusion Weighted Imaging (DWI) can be used to provide such information.
The distinction between functional and effective connectivity is not always sharp; sometimes causal or directed connectivity is called functional connectivity. Functional connectivity, may be defined as the temporal correlation (in terms of statistically significant dependence between distant brain regions) among the activity of different neural assemblies, whereas effective connectivity may be defined as the direct or indirect influence that one neural system exerts over another.
Some brain connectivity estimators evaluate connectivity from brain activity time series such as Electroencephalography (EEG), Local field potential (LFP) or spike trains, with an effect on the directed connectivity. These estimators can be applied to fMRI data, if the required image sequences are available.
Among estimators of connectivity, there are linear and non-linear, bivariate and multivariate measures. Certain estimators also indicate directionality. Different methods of connectivity estimation vary in their effectiveness. This article provides an overview of these measures, with an emphasis on the most effective methods.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Brain connectivity estimators represent patterns of links in the brain. Connectivity can be considered at different levels of the brain's organisation: from neurons, to neural assemblies and brain structures. Brain connectivity involves different concepts such as: neuroanatomical or structural connectivity (pattern of anatomical links), functional connectivity (usually understood as statistical dependencies) and effective connectivity (referring to causal interactions).
A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons, and the estimated number of neurons in the cerebellum is 55–70 billion. Each neuron is connected by synapses to several thousand other neurons.
Explores the importance of the hippocampus in memory and spatial navigation, discussing its unique structure and implications for broader brain research.
Explores neuroimaging basics, brain network scales, connectivity, history, and physics, emphasizing the importance of understanding data at different scales.
Efficient analysis of the three-dimensional (3D) shape and distribution of curvilinear crystal defects, namely dislocations, is an open research topic in material science and computer vision. In order
In the last twenty years, advances in real-time functional magnetic resonance imaging (rt-fMRI) have offered exciting new tools to study the human brain. One of them, termed rt-fMRI neurofeedback (NF)
Preterm birth is a major pediatric health problem that perturbs the genetically determined program of corticogenesis of the developing brain. As a consequence, prematurity has been strongly associated