G-structure on a manifoldIn differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(n)-structure defines a Riemannian metric, and for the special linear group an SL(n,R)-structure is the same as a volume form.
Principal bundleIn mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with An action of on , analogous to for a product space. A projection onto . For a product space, this is just the projection onto the first factor, . Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of .
Principal homogeneous spaceIn mathematics, a principal homogeneous space, or torsor, for a group G is a homogeneous space X for G in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group G is a non-empty set X on which G acts freely and transitively (meaning that, for any x, y in X, there exists a unique g in G such that x·g = y, where · denotes the (right) action of G on X).
Parallelizable manifoldIn mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields on the manifold, such that at every point of the tangent vectors provide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of .
Volume formIn mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold of dimension , a volume form is an -form. It is an element of the space of sections of the line bundle , denoted as . A manifold admits a nowhere-vanishing volume form if and only if it is orientable. An orientable manifold has infinitely many volume forms, since multiplying a volume form by a nowhere-vanishing real valued function yields another volume form.
Moving frameIn mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space. In lay terms, a frame of reference is a system of measuring rods used by an observer to measure the surrounding space by providing coordinates. A moving frame is then a frame of reference which moves with the observer along a trajectory (a curve).
Pullback (differential geometry)Let be a smooth map between smooth manifolds and . Then there is an associated linear map from the space of 1-forms on (the linear space of sections of the cotangent bundle) to the space of 1-forms on . This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on may be pulled back to using . When the map is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from to or vice versa.
Solder formIn mathematics, more precisely in differential geometry, a soldering (or sometimes solder form) of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold.
Vector-valued differential formIn mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms. An important case of vector-valued differential forms are Lie algebra-valued forms. (A connection form is an example of such a form.) Let M be a smooth manifold and E → M be a smooth vector bundle over M.
Metric tensorIn the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold M (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.