In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.: More generally, a Hankel matrix is any matrix of the form In terms of the components, if the element of is denoted with , and assuming , then we have for all Any Hankel matrix is symmetric. Let be the exchange matrix. If is a Hankel matrix, then where is a Toeplitz matrix. If is real symmetric, then will have the same eigenvalues as up to sign. The Hilbert matrix is an example of a Hankel matrix. Hankel matrices are closely related to formal Laurent series. In fact, such a series gives rise to a linear map, referred to as a Hankel operator which takes a polynomial and sends it to the product , but discards all powers of with a non-negative exponent, so as to give an element in , the formal power series with strictly negative exponents. The map is in a natural way -linear, and its matrix with respect to the elements and is the Hankel matrix Any Hankel matrix arises in such a way. A theorem due to Kronecker says that the rank of this matrix is finite precisely if is a rational function, i.e., a fraction of two polynomials . A Hankel operator on a Hilbert space is one whose matrix is a (possibly infinite) Hankel matrix with respect to an orthonormal basis. As indicated above, a Hankel Matrix is a matrix with constant values along its antidiagonals, which means that a Hankel matrix must satisfy, for all rows and columns , . Note that every entry depends only on . Let the corresponding Hankel Operator be . Given a Hankel matrix , the corresponding Hankel operator is then defined as . We are often interested in Hankel operators over the Hilbert space , the space of square integrable bilateral complex sequences. For any , we have We are often interested in approximations of the Hankel operators, possibly by low-order operators. In order to approximate the output of the operator, we can use the spectral norm (operator 2-norm) to measure the error of our approximation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.