Multimodal logicA multimodal logic is a modal logic that has more than one primitive modal operator. They find substantial applications in theoretical computer science. A modal logic with n primitive unary modal operators is called an n-modal logic. Given these operators and negation, one can always add modal operators defined as if and only if . Perhaps the first substantive example of a two-modal logic is Arthur Prior's tense logic, with two modalities, F and P, corresponding to "sometime in the future" and "sometime in the past".
Common knowledge (logic)Common knowledge is a special kind of knowledge for a group of agents. There is common knowledge of p in a group of agents G when all the agents in G know p, they all know that they know p, they all know that they all know that they know p, and so on ad infinitum. It can be denoted as . The concept was first introduced in the philosophical literature by David Kellogg Lewis in his study Convention (1969). The sociologist Morris Friedell defined common knowledge in a 1969 paper.
Induction puzzlesInduction puzzles are logic puzzles, which are examples of multi-agent reasoning, where the solution evolves along with the principle of induction. A puzzle's scenario always involves multiple players with the same reasoning capability, who go through the same reasoning steps. According to the principle of induction, a solution to the simplest case makes the solution of the next complicated case obvious. Once the simplest case of the induction puzzle is solved, the whole puzzle is solved subsequently.
Modal operatorA modal connective (or modal operator) is a logical connective for modal logic. It is an operator which forms propositions from propositions. In general, a modal operator has the "formal" property of being non-truth-functional in the following sense: The truth-value of composite formulae sometimes depend on factors other than the actual truth-value of their components. In the case of alethic modal logic, a modal operator can be said to be truth-functional in another sense, namely, that of being sensitive only to the distribution of truth-values across possible worlds, actual or not.
Doxastic logicDoxastic logic is a type of logic concerned with reasoning about beliefs. The term derives from the Ancient Greek (doxa, "opinion, belief"), from which the English term doxa ("popular opinion or belief") is also borrowed. Typically, a doxastic logic uses the notation to mean "It is believed that is the case", and the set denotes a set of beliefs. In doxastic logic, belief is treated as a modal operator. There is complete parallelism between a person who believes propositions and a formal system that derives propositions.
Dynamic logic (modal logic)In logic, philosophy, and theoretical computer science, dynamic logic is an extension of modal logic capable of encoding properties of computer programs. A simple example of a statement in dynamic logic is which states that if the ground is currently dry and it rains, then afterwards the ground will be wet. The syntax of dynamic logic contains a language of propositions (like "the ground is dry") and a language of actions (like "it rains").
LogicLogic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Kripke semanticsKripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise').
StoicismStoicism is one of the four major schools of thought established in the Hellenistic period. It was founded in the ancient Agora of Athens by Zeno of Citium around 300 BC. The Stoics believed that the practice of virtue is enough to achieve eudaimonia: a well-lived, flourishing life. The Stoics identified the path to achieving it with a life spent practicing certain virtues in everyday life such as courage or temperance and living in accordance with nature.
Normal modal logicIn logic, a normal modal logic is a set L of modal formulas such that L contains: All propositional tautologies; All instances of the Kripke schema: and it is closed under: Detachment rule (modus ponens): implies ; Necessitation rule: implies . The smallest logic satisfying the above conditions is called K. Most modal logics commonly used nowadays (in terms of having philosophical motivations), e.g. C. I. Lewis's S4 and S5, are normal (and hence are extensions of K).