Algebraic curveIn mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0.
Minimal model programIn algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible".
Kodaira dimensionIn algebraic geometry, the Kodaira dimension κ(X) measures the size of the canonical model of a projective variety X. Igor Shafarevich in a seminar introduced an important numerical invariant of surfaces with the notation κ. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The canonical bundle of a smooth algebraic variety X of dimension n over a field is the line bundle of n-forms, which is the nth exterior power of the cotangent bundle of X.
Rational varietyIn mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to the field of all rational functions for some set of indeterminates, where d is the dimension of the variety. Let V be an affine algebraic variety of dimension d defined by a prime ideal I = ⟨f1, ..., fk⟩ in . If V is rational, then there are n + 1 polynomials g0, ..., gn in such that In order words, we have a of the variety.
Singular point of an algebraic varietyIn the mathematical field of algebraic geometry, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth.
Rational mappingIn mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Formally, a rational map between two varieties is an equivalence class of pairs in which is a morphism of varieties from a non-empty open set to , and two such pairs and are considered equivalent if and coincide on the intersection (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
Projective varietyIn algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .
Dimension of an algebraic varietyIn mathematics and specifically in algebraic geometry, the dimension of an algebraic variety may be defined in various equivalent ways. Some of these definitions are of geometric nature, while some other are purely algebraic and rely on commutative algebra. Some are restricted to algebraic varieties while others apply also to any algebraic set. Some are intrinsic, as independent of any embedding of the variety into an affine or projective space, while other are related to such an embedding.
Hyperelliptic curveIn algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0). A hyperelliptic function is an element of the function field of such a curve, or of the Jacobian variety on the curve; these two concepts are identical for elliptic functions, but different for hyperelliptic functions.
Resolution of singularitiesIn algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, a non-singular variety W with a proper birational map W→V. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic p it is an open problem in dimensions at least 4. Originally the problem of resolution of singularities was to find a nonsingular model for the function field of a variety X, in other words a complete non-singular variety X′ with the same function field.