**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Singular point of an algebraic variety

Summary

In the mathematical field of algebraic geometry, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth.
A plane curve defined by an implicit equation
where F is a smooth function is said to be singular at a point if the Taylor series of F has order at least 2 at this point.
The reason for this is that, in differential calculus, the tangent at the point (x0, y0) of such a curve is defined by the equation
whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent may not be defined in the standard way, either because it does not exist or a special definition must be provided.
In general for a hypersurface
the singular points are those at which all the partial derivatives simultaneously vanish. A general algebraic variety V being defined as the common zeros of several polynomials, the condition on a point P of V to be a singular point is that the Jacobian matrix of the first order partial derivatives of the polynomials has a rank at P that is lower than the rank at other points of the variety.
Points of V that are not singular are called non-singular or regular. It is always true that almost all points are non-singular, in the sense that the non-singular points form a set that is both open and dense in the variety (for the Zariski topology, as well as for the usual topology, in the case of varieties defined over the complex numbers).
In case of a real variety (that is the set of the points with real coordinates of a variety defined by polynomials with real coefficients), the variety is a manifold near every regular point.

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications

Related units

Related people

Related courses (11)

No results

Related concepts (28)

Related MOOCs (9)

Related lectures (117)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Singular point of an algebraic variety

In the mathematical field of algebraic geometry, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth.

Zariski tangent space

In algebraic geometry, the Zariski tangent space is a construction that defines a tangent space at a point P on an algebraic variety V (and more generally). It does not use differential calculus, being based directly on abstract algebra, and in the most concrete cases just the theory of a system of linear equations. For example, suppose given a plane curve C defined by a polynomial equation F(X,Y) = 0 and take P to be the origin (0,0).

Cubic plane curve

In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation F(x, y, z) = 0 applied to homogeneous coordinates (x:y:z) for the projective plane; or the inhomogeneous version for the affine space determined by setting z = 1 in such an equation. Here F is a non-zero linear combination of the third-degree monomials x^3, y^3, z^3, x^2 y, x^2 z, y^2 x, y^2 z, z^2 x, z^2 y, xyz These are ten in number; therefore the cubic curves form a projective space of dimension 9, over any given field K.

No results

No results

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

MATH-201: Analysis III

Calcul différentiel et intégral: Eléments d'analyse vectorielle, intégration par partie, intégrale curviligne, intégrale de surface, théorèmes de Stokes, Green, Gauss, fonctions harmoniques;
Eléments

MATH-123(b): Geometry

Ce cours donne une introduction à la géométrie des courbes et des surfaces.

Division in Extreme and Mean Reason: Luca Pacioli's Influence

Delves into the concept of Division in Extreme and Mean Reason (DEMR) and its historical significance in geometry.

Characteristic Polynomials and Similar Matrices

Explores characteristic polynomials, similarity of matrices, and eigenvalues in linear transformations.

Complex Analysis: Laurent Series

Explores Laurent series in complex analysis, emphasizing singularities, residues, and the Cauchy theorem.