In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element.
This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements.
This terminology applies to abelian groups (with "module" and "submodule" replaced by "group" and "subgroup"). This is allowed by the fact that the abelian groups are the modules over the ring of integers (in fact, this is the origin of the terminology, that has been introduced for abelian groups before being generalized to modules).
In the case of groups that are noncommutative, a torsion element is an element of finite order. Contrary to the commutative case, the torsion elements do not form a subgroup, in general.
An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., r m = 0.
In an integral domain (a commutative ring without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general rings.
A module M over a ring R is called a torsion module if all its elements are torsion elements, and torsion-free if zero is the only torsion element. If the ring R is an integral domain then the set of all torsion elements forms a submodule of M, called the torsion submodule of M, sometimes denoted T(M). If R is not commutative, T(M) may or may not be a submodule.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order. The proof that AT is closed under the group operation relies on the commutativity of the operation (see examples section).
In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup.
In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
The course discusses the basic principles of structural mechanics, analyzing the performance of materials and structures against loading and focuses on the stress strain relationships and the effect
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
We present DARKFLUX, a software tool designed to analyze indirect-detection signatures for next-generation models of dark matter (DM) with multiple annihilation channels. Version 1.0 of this tool accepts user-generated models with 2 -> 2 tree-level dark ma ...
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...