Summary
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element. This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements. This terminology applies to abelian groups (with "module" and "submodule" replaced by "group" and "subgroup"). This is allowed by the fact that the abelian groups are the modules over the ring of integers (in fact, this is the origin of the terminology, that has been introduced for abelian groups before being generalized to modules). In the case of groups that are noncommutative, a torsion element is an element of finite order. Contrary to the commutative case, the torsion elements do not form a subgroup, in general. An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., r m = 0. In an integral domain (a commutative ring without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general rings. A module M over a ring R is called a torsion module if all its elements are torsion elements, and torsion-free if zero is the only torsion element. If the ring R is an integral domain then the set of all torsion elements forms a submodule of M, called the torsion submodule of M, sometimes denoted T(M). If R is not commutative, T(M) may or may not be a submodule.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.