Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon. The counting efficiency is determined by the quantum efficiency and the system's electronic losses.
Many photodetectors can be configured to detect individual photons, each with relative advantages and disadvantages. Common types include photomultipliers, geiger counters, single-photon avalanche diodes, superconducting nanowire single-photon detectors, transition edge sensors, and scintillation counters. Charge-coupled devices can be used.
Photon counting eliminates gain noise, where the proportionality constant between analog signal out and number of photons varies randomly. Thus, the excess noise factor of a photon-counting detector is unity, and the achievable signal-to-noise ratio for a fixed number of photons is generally higher than the same detector without photon counting.
Photon counting can improve temporal resolution. In a conventional detector, multiple arriving photons generate overlapping impulse responses, limiting temporal resolution to approximately the fall time of the detector. However, if it is known that a single photon was detected, the center of the impulse response can be evaluated to precisely determine its arrival time. Using time-correlated single-photon counting (TCSPC), temporal resolution of less than 25 ps has been demonstrated using detectors with a fall time more than 20 times greater.
Single-photon detectors are typically limited to detecting one photon at a time and may require time between detection events to reset. Photons that arrive during this interval may not be detected. Therefore, the maximum light intensity that can be accurately measured is typically low. Measurements composed of small numbers of photons intrinsically have a low signal-to-noise ratio caused by the randomly varying numbers of emitted photons. This effect is less pronounced in conventional detectors that can concurrently detect large numbers of photons.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an in-depth treatment of the latest experimental and theoretical topics in quantum sciences and technologies, including for example quantum sensing, quantum optics, cold atoms, th
Students analyse the fundamental characteristics of optical detectors. Thermal and photoemissive devices as well as photodiodes and infrared sensors are studied. CCD and CMOS cameras are analysed in d
The course will cover the physics of particle detectors. It will introduce the experimental techniques used in nuclear and particle physics. The lecture includes the interaction of particles with matt
A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses. It consists of a scintillator which generates photons in response to incident radiation, a sensitive photodetector (usually a photomultiplier tube (PMT), a charge-coupled device (CCD) camera, or a photodiode), which converts the light to an electrical signal and electronics to process this signal.
Radiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency (IAEA) as "The protection of people from harmful effects of exposure to ionizing radiation, and the means for achieving this". Exposure can be from a source of radiation external to the human body or due to internal irradiation caused by the ingestion of radioactive contamination. Ionizing radiation is widely used in industry and medicine, and can present a significant health hazard by causing microscopic damage to living tissue.
Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically photo detector have a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region.
The space industry has experienced substantial growth in recent years, leading to rapid advancements in space exploration and space-based technologies. Consequently, the study of electronics and sensor performance in extreme environments has become crucial ...
Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spati ...
Decay of a particle into more particles is a ubiquitous phenomenon to interacting quantum systems, taking place in colliders, nuclear reactors or solids. In a nonlinear medium, even a single photon would decay by down-converting (splitting) into lower-freq ...