In fluid thermodynamics, combined forced convection and natural convection, or mixed convection, occurs when natural convection and forced convection mechanisms act together to transfer heat. This is also defined as situations where both pressure forces and buoyant forces interact. How much each form of convection contributes to the heat transfer is largely determined by the flow, temperature, geometry, and orientation. The nature of the fluid is also influential, since the Grashof number increases in a fluid as temperature increases, but is maximized at some point for a gas.
Mixed convection problems are characterized by the Grashof number (for the natural convection) and the Reynolds number (for the forced convection). The relative effect of buoyancy on mixed convection can be expressed through the Richardson number:
The respective length scales for each dimensionless number must be chosen depending on the problem, e.g. a vertical length for the Grashof number and a horizontal scale for the Reynolds number. Small Richardson numbers characterize a flow dominated by forced convection. Richardson numbers higher than indicate that the flow problem is pure natural convection and the influence of forced convection can be neglected.
Like for natural convection, the nature of a mixed convection flow is highly dependent on heat transfer (as buoyancy is one of the driving mechanisms) and turbulence effects play a significant role.
Because of the wide range of variables, hundreds of papers have been published for experiments involving various types of fluids and geometries. This variety makes a comprehensive correlation difficult to obtain, and when it is, it is usually for very limited cases. Combined forced and natural convection, however, can be generally described in one of three ways.
The first case is when natural convection aids forced convection. This is seen when the buoyant motion is in the same direction as the forced motion, thus accelerating the boundary layer and enhancing the heat transfer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
Ce cours fournit aux étudiants l'expérience pratique avec les "opérations unitaires" simples basées sur le transfert de chaleur et de masse. Les étudiants développent la capacité d'augmenter l'échelle
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow). Convection is usually the dominant form of heat transfer in liquids and gases. Note that this definition of convection is only applicable in Heat transfer and thermodynamic contexts.
Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow. Convective flow may be transient (such as when a multiphase mixture of oil and water separates) or steady state (see Convection cell).
Convection of water vapor in snowpacks is supposed to have a major impact on snow density and microstructure profiles with strong implications for the thermal regime and snow stability. However, the process has never been directly measured and only recentl ...
FRONTIERS MEDIA SA2023
,
The focus of this study is to evaluate the effects of porous media inside the gas flow channel of Proton Exchange Membrane Fuel Cells (PEMFC) on four different output parameters of voltage, power density, pressure drop, and Nusselt number (Nu) considering ...
This paper studies numerically the convection of water vapour in snowpacks using an Eulerian-Eulerian two-phase approach. The convective water vapour transport in snow and its effects on snow density are often invoked to explain observed density profiles, ...