PHYS-426: Quantum physics IVIntroduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
PHYS-313: Quantum physics IThe objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-431: Quantum field theory IThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
PHYS-443: Physics of nuclear reactorsIn this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
PHYS-101(f): General physics : mechanicsLe but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-758: Advanced Course on Quantum CommunicationThe aim of this doctoral course by Nicolas Sangouard is to lay the theoretical groundwork that is needed for students to understand how to take advantage of quantum effects for communication technolog