Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, Saccharomyces cerevisiae, which is then ligated into a bacterial plasmid. By inserting large fragments of DNA, from 100–1000 kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking. This is the process that was initially used for the Human Genome Project, however due to stability issues, YACs were abandoned for the use of Bacterial artificial chromosome
The bakers' yeast S. cerevisiae is one of the most important experimental organisms for studying eukaryotic molecular genetics.
Beginning with the initial research of the Rankin et al., Strul et al., and Hsaio et al., the inherently fragile chromosome was stabilized by discovering the necessary autonomously replicating sequence (ARS); a refined YAC utilizing this data was described in 1983 by Murray et al.
The primary components of a YAC are the ARS, centromere , and telomeres from S. cerevisiae. Additionally, selectable marker genes, such as antibiotic resistance and a visible marker, are utilized to select transformed yeast cells. Without these sequences, the chromosome will not be stable during extracellular replication, and would not be distinguishable from colonies without the vector.
A YAC is built using an initial circular DNA plasmid, which is typically cut into a linear DNA molecule using restriction enzymes; DNA ligase is then used to ligate a DNA sequence or gene of interest into the linearized DNA, forming a single large, circular piece of DNA. The basic generation of linear yeast artificial chromosomes can be broken down into 6 main steps:
Chromosome III is the third smallest chromosome in S. cerevisiae; its size was estimated from pulsed-field gel electro- phoresis studies to be 300–360 kb
This chromosome has been the subject of intensive study, not least because it contains the three genetic loci involved in mating-type control: MAT, HML and HMR.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In molecular cloning, a vector is any particle (e.g., plasmids, cosmids, Lambda phages) used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.
In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.
Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA.
Gene regulatory networks (GRNs) play a crucial role in an organism's response to changing environmental conditions. Cellular behaviors typically result from the integration of multiple gene outputs, and their regulation often demands precise control of num ...
Telomeres are nucleoprotein structures at the ends of linear chromosomes, being essential for the maintenance of genomic integrity. Telomeres have a unique structure which distinguishes chromosome termini from DNA damage sites. Shelterin complexes are the ...
EPFL2023
During cytokinesis in budding yeast (Saccharomyces cerevisiae) damaged proteins are distributed asymmetrically between the daughter and the mother cell. Retention of damaged proteins is a crucial mechanism ensuring a healthy daughter cell with full replica ...