Summary
Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons. The weak force is best known for its role in nuclear decay. It has very short range but (apart from gravity) is the only force to interact with neutrinos. Like other subatomic forces, the weak force is mediated via exchange particles. Perhaps the most well known of the exchange particles for the weak force is the W particle which is involved in beta decay. W particles have electric charge – there are both positive and negative W particles – however the Z boson is also an exchange particle for the weak force but does not have any electrical charge. Exchange of a Z boson transfers momentum, spin, and energy, but leaves the interacting particles' quantum numbers unaffected – charge, flavor, baryon number, lepton number, etc. Because there is no transfer of electrical charge involved, exchange of Z particles is referred to as "neutral" in the phrase "neutral current". However the word "current" here has nothing to do with electricity – it simply refers to the exchange of the Z particle. The Z boson's neutral current interaction is determined by a derived quantum number called weak charge, which acts similarly to weak isospin for interactions with the W bosons. The neutral current that gives the interaction its name is that of the interacting particles. For example, the neutral current contribution to the _Electron neutrino_Electron → _Electron neutrino_Electron elastic scattering amplitude is where the neutral currents describing the flow of the neutrino and of the electron are given by: where: and are the vector and axial couplings for fermion . denotes the weak isospin of the fermions, Q their electric charge and their weak charge.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (7)
PHYS-416: Particle physics II
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
PHYS-471: Particle physics: the flavour frontiers
This course will present experimental aspects of flavour physics primarily in the quark sector but also in the lepton sector and their role in the development of the Standard Model of particle physics
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
Show more
Related lectures (34)
Advanced Physics I: Laws of Newton and Fundamental Forces
Explores Newton's laws, fundamental forces, and exercises on these topics.
The Weak Interaction
Explores parity, intrinsic particle parities, V-A structure, chiral and helicity properties, and evidence for the V-A nature of weak interactions.
Discrete Symmetries Introduction
Introduces the concept of discrete symmetries in Quantum Field Theory and their impact on particles and anti-particles.
Show more
Related publications (93)

Density-wave ordering in a unitary Fermi gas with photon-mediated interactions

Jean-Philippe Brantut, Timo Zwettler, Victor Youri Helson, Kevin Etienne Robert Roux, Hideki Konishi, Elvia Colella

A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical an ...
NATURE PORTFOLIO2023

Performance assessment of a tightly baffled, long-legged divertor configuration in TCV with SOLPS-ITER

Basil Duval, Holger Reimerdes, Christian Gabriel Theiler, Guang-Yu Sun, Claudia Colandrea

Numerical simulations explore a possible tightly baffled, long-legged divertor (TBLLD) concept in a future upgrade of the tokamak à configuration variable (TCV). The SOLPS-ITER code package is used to compare the exhaust performance of several TBLLD config ...
2023
Show more
Related concepts (16)
Higgs boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
Gargamelle
Gargamelle was a heavy liquid bubble chamber detector in operation at CERN between 1970 and 1979. It was designed to detect neutrinos and antineutrinos, which were produced with a beam from the Proton Synchrotron (PS) between 1970 and 1976, before the detector was moved to the Super Proton Synchrotron (SPS). In 1979 an irreparable crack was discovered in the bubble chamber, and the detector was decommissioned. It is currently part of the "Microcosm" exhibition at CERN, open to the public.
CERN
The European Organization for Nuclear Research, known as CERN (sɜːrn; sɛʁn; Conseil européen pour la recherche nucléaire), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states. Israel, admitted in 2013, is the only non-European full member. CERN is an official United Nations General Assembly observer.
Show more