An orphan drug is a pharmaceutical agent that is developed to treat certain rare medical conditions. An orphan drug would not be profitable to produce without government assistance, due to the small population of patients affected by the conditions. The conditions that orphan drugs are used to treat are referred to as orphan diseases. The assignment of orphan status to a disease and to drugs developed to treat it is a matter of public policy that depends on the legislation (if there is any) of the country.
Designation of a drug as an orphan drug has yielded medical breakthroughs that might not otherwise have been achieved, due to the economics of drug research and development. Examples of this can be that in the U.S. and the EU, it is easier to gain marketing approval for an orphan drug. There may be other financial incentives, such as an extended period of exclusivity, during which the producer has sole rights to market the drug. All are intended to encourage development of drugs which would otherwise lack sufficient profit motive to attract corporate research budgets and personnel.
According to the US Food and Drug Administration (FDA), an orphan drug is defined as one "intended for the treatment, prevention or diagnosis of a rare disease or condition, which is one that affects less than 200,000 persons in the US" (which equates to approximately 6 cases per 10,000 population) "or meets cost recovery provisions of the act".
In the European Union (EU), the European Medicines Agency (EMA) defines a drug as "orphan" if it is intended for the diagnosis, prevention or treatment of a life-threatening or chronically and seriously debilitating condition affecting not more than 5 in 10,000 EU people. EMA also qualifies a drug as orphan if – without incentives – it would be unlikely that marketing the drug in the EU would generate sufficient benefit for the affected people and for the drug manufacturer to justify the investment.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course discusses methods in modern drug development. Each week, a short introduction to a drug development method / field is provided and a recent research paper is discussed in depth. Students pa
The pharmaceutical industry discovers, develops, produces, and markets pharmaceutical drugs for the use as medications to be administered to patients (or self-administered), with the aim to cure and prevent diseases, or alleviate symptoms. Pharmaceutical companies may deal in generic or brand medications and medical devices. They are subject to a variety of laws and regulations that govern the patenting, testing, safety, efficacy using drug testing and marketing of drugs. The global pharmaceuticals market produced treatments worth $1,228.
A biopharmaceutical, also known as a biological medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues.
In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by serendipitous discovery, as with penicillin. More recently, chemical libraries of synthetic small molecules, natural products or extracts were screened in intact cells or whole organisms to identify substances that had a desirable therapeutic effect in a process known as classical pharmacology.
Delves into enzyme inhibition, reversible and irreversible binding, and covalent drugs, exploring drug modes of action and their impact on drug efficacy.
Cyclic peptides combine a number of favorable properties that make them attractive for drug development. Today, more than 40 therapeutics based on cyclic peptides are in use, and new, powerful technologies for their development suggest that this number cou ...
Ex-vivo drug sensitivity screening (DSS) allows the prediction of cancer treatment effectiveness in a personalized fashion. However, it only provides a readout on mixtures of cells, potentially occulting important information on clinically relevant cell su ...
EPFL2024
, ,
Retinoblastoma is a rare childhood cancer of the eye. Of the small number of drugs are used to treat retinoblastoma, all have been repurposed from drugs developed for other conditions. In order to find drugs or drug combinations better suited to the improv ...