**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Definite matrix

Summary

In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is
positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of
Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite.
A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines an inner product.
Positive-definite and positive-semidefinite matrices can be characterized in many ways, which may explain the importance of the concept in various parts of mathematics. A matrix M is positive-definite if and only if it satisfies any of the following equivalent conditions.
M is congruent with a diagonal matrix with positive real entries.
M is symmetric or Hermitian, and all its eigenvalues are real and positive.
M is symmetric or Hermitian, and all its leading principal minors are positive.
There exists an invertible matrix with conjugate transpose such that
A matrix is positive semi-definite if it satisfies similar equivalent conditions where "positive" is replaced by "nonnegative", "invertible matrix" is replaced by "matrix", and the word "leading" is removed.
Positive-definite and positive-semidefinite real matrices are at the basis of convex optimization, since, given a function of several real variables that is twice differentiable, then if its Hessian matrix (matrix of its second partial derivatives) is positive-definite at a point p, then the function is convex near p, and, conversely, if the function is convex near p, then the Hessian matrix is positive-semidefinite at p.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (224)

Related people (45)

, , , , , , , , ,

Related units (7)

Related concepts (28)

In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.

In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.

In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.

Related courses (32)

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

Related lectures (376)

Related MOOCs (10)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Discrete Symmetries: Asymptotic States and S-matrix

Covers the concept of discrete symmetries, focusing on the introduction to asymptotic states and S-matrix.

Bilinear Forms: Theory and Applications

Covers the theory and applications of bilinear forms in various mathematical contexts.

SVD: Singular Value Decomposition

Covers the concept of Singular Value Decomposition (SVD) for compressing information in matrices and images.

Olivier Sauter, Stefano Coda, Justin Richard Ball, Alberto Mariani, Matteo Vallar, Filippo Bagnato

Negative triangularity (NT) scenarios in TCV have been compared to positive triangularity (PT) scenarios using the same plasma shapes foreseen for divertor tokamak test tokamak operations. The experiments provided a NT/PT L-mode pair and a PT H-mode with d ...

Daniel Kressner, Alice Cortinovis

This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...

In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...