In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.)
For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below).
Given two central simple algebras A ~ M(n,S) and B ~ M(m,T) over the same field F, A and B are called similar (or Brauer equivalent) if their division rings S and T are isomorphic. The set of all equivalence classes of central simple algebras over a given field F, under this equivalence relation, can be equipped with a group operation given by the tensor product of algebras. The resulting group is called the Brauer group Br(F) of the field F. It is always a torsion group.
According to the Artin–Wedderburn theorem a finite-dimensional simple algebra A is isomorphic to the matrix algebra M(n,S) for some division ring S. Hence, there is a unique division algebra in each Brauer equivalence class.
Every automorphism of a central simple algebra is an inner automorphism (this follows from the Skolem–Noether theorem).
The dimension of a central simple algebra as a vector space over its centre is always a square: the degree is the square root of this dimension. The Schur index of a central simple algebra is the degree of the equivalent division algebra: it depends only on the Brauer class of the algebra.
The period or exponent of a central simple algebra is the order of its Brauer class as an element of the Brauer group. It is a divisor of the index, and the two numbers are composed of the same prime factors.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
En mathématiques, un anneau simple est une des structures algébriques utilisées en algèbre générale. Un anneau est dit simple s'il est non nul et n'admet pas d'autres idéaux bilatères que {0} et lui-même. Un anneau commutatif est simple si et seulement si c'est un corps commutatif. Plus généralement, un corps (non nécessairement commutatif) est un anneau simple, et l'anneau des matrices carrées d'ordre n à coefficients dans un corps est simple.
En mathématiques, le groupe de Brauer, nommé d'après Richard Brauer, constitue l'espace classifiant des algèbres centrales simples sur un corps commutatif k donné, pour une certaine relation d'équivalence. On munit cet espace d'une structure de groupe abélien en l'identifiant à un espace de cohomologie galoisienne. Une algèbre centrale simple sur un corps commutatif k, est une algèbre associative de dimension finie A, qui n'admet aucun idéal bilatère non trivial (simplicité), et dont le centre est k (centralité).
Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Explore le théorème de Fermat, la factorisation des entiers, les propriétés de Z[i] et les quaternions de Hurwitz.
Couvre les idéaux, les représentations, les modules et les idéaux maximaux en algèbres associatives.
Study the basics of representation theory of groups and associative algebras.
C'est un cours introductoire dans la théorie d'anneau et de corps.
Let k be an algebraically closed field of arbitrary characteristic, let G be a simple simply connected linear algebraic group and let V be a rational irreducible tensor-indecomposable finite-dimensional kG-module. For an element g of G we denote by $V_{g}( ...
Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
Let G be a simple algebraic group over an algebraically closed field F of characteristic p >= h, the Coxeter number of G. We observe an easy 'recursion formula' for computing the Jantzen sum formula of a Weyl module with p-regular highest weight. We also d ...