Interval (mathematics)In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0, 1, and all numbers in between. Other examples of intervals are the set of numbers such that 0 < x < 1, the set of all real numbers , the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element).
Helly's theoremHelly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913, but not published by him until 1923, by which time alternative proofs by and had already appeared. Helly's theorem gave rise to the notion of a Helly family. Let X1, ..., Xn be a finite collection of convex subsets of Rd, with n ≥ d + 1.
Radon's theoremIn geometry, Radon's theorem on convex sets, published by Johann Radon in 1921, states that:Any set of d + 2 points in Rd can be partitioned into two sets whose convex hulls intersect. A point in the intersection of these convex hulls is called a Radon point of the set.For example, in the case d = 2, any set of four points in the Euclidean plane can be partitioned in one of two ways. It may form a triple and a singleton, where the convex hull of the triple (a triangle) contains the singleton; alternatively, it may form two pairs of points that form the endpoints of two intersecting line segments.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Duality (optimization)In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem (and vice versa). Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem.
Affine hullIn mathematics, the affine hull or affine span of a set S in Euclidean space Rn is the smallest affine set containing S, or equivalently, the intersection of all affine sets containing S. Here, an affine set may be defined as the translation of a vector subspace. The affine hull aff(S) of S is the set of all affine combinations of elements of S, that is, The affine hull of the empty set is the empty set. The affine hull of a singleton (a set made of one single element) is the singleton itself.
Extreme pointIn mathematics, an extreme point of a convex set in a real or complex vector space is a point in which does not lie in any open line segment joining two points of In linear programming problems, an extreme point is also called vertex or corner point of Throughout, it is assumed that is a real or complex vector space.
Barycentric coordinate systemIn geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points in a plane, a tetrahedron for points in three-dimensional space, etc.). The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass (or barycenter) of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex.
Legendre transformationIn mathematics, the Legendre transformation (or Legendre transform), named after Adrien-Marie Legendre, is an involutive transformation on real-valued convex functions of one real variable. In physical problems, it is used to convert functions of one quantity (such as velocity, pressure, or temperature) into functions of the conjugate quantity (momentum, volume, and entropy, respectively).
Minkowski additionIn geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A to each vector in B: The Minkowski difference (also Minkowski subtraction, Minkowski decomposition, or geometric difference) is the corresponding inverse, where produces a set that could be summed with B to recover A. This is defined as the complement of the Minkowski sum of the complement of A with the reflection of B about the origin. This definition allows a symmetrical relationship between the Minkowski sum and difference.