Intervalle (mathématiques)En mathématiques, un intervalle (du latin intervallum) est étymologiquement un ensemble ordonné de points compris entre deux bornes. Cette notion première s'est ensuite développée jusqu'à aboutir à la notion topologique de boule d'un espace métrique. Initialement, on appelle intervalle réel un ensemble de nombres délimité par deux nombres réels constituant une borne inférieure et une borne supérieure. Un intervalle contient tous les nombres réels compris entre ces deux bornes.
Théorème de HellyLe théorème de Helly est un résultat combinatoire de géométrie sur les convexes. Ce résultat a été prouvé en 1913 par Eduard Helly, et il a été publié par Johann Radon en 1921. Il est facile d'étendre le théorème à des familles infinies d'ensembles convexes, en rajoutant une hypothèse de compacité Théorème|Corollaire|Si est une collection de sous-ensembles compacts convexes de et que pour toute partie finie de cardinal supérieur ou égal à , alors l'intersection de tous les est non vide, c'est-à-dire : .
Théorème de Radon (géométrie)Le théorème de Radon, ou lemme de Radon, sur les ensembles convexes affirme que tout ensemble contenant éléments de admet une partition en deux parties dont les enveloppes convexes et se rencontrent. Tout ensemble contenant éléments de admet une partition en deux parties dont les enveloppes convexes et se rencontrent. Une telle partition est alors appelée partition de Radon, et un point de l'intersection des enveloppes est appelé point de Radon (il ne s'agit pas a priori d'un des points ). Prenons l'exemple .
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Sous-espace affine engendréEn géométrie, dans un espace affine , le sous-espace affine engendré par une partie non vide , également dénommé l'enveloppe affine de , est le plus petit sous-espace affine de contenant . Dans un espace affine, l'intersection d'une famille (non vide) de sous-espaces affines est soit l'ensemble vide, soit un sous-espace affine et l'espace lui-même est un sous-espace, ce qui justifie la définition suivante : Soient et des espaces affines et , deux parties non vides de et une partie non vide de .
Points et parties remarquables de la frontière d'un convexeFace à un polyèdre convexe de l'espace de dimension 3, qu'il soit familier comme un cube ou plus compliqué, on sait spontanément reconnaître les points où le convexe est « pointu », ses sommets, puis subdiviser les points restants entre points des arêtes et points des faces. Cet article présente quelques définitions qui étendent ces concepts aux ensembles convexes généraux, de dimension quelconque, à la frontière éventuellement incurvée.
Coordonnées barycentriquesEn géométrie affine, les coordonnées barycentriques d'un point par rapport à un repère barycentrique sont une famille de poids permettant de définir ce point comme un barycentre. Repère affine Une famille finie (P,...,P) de points d'un espace affine E est dite affinement libre, ou encore ces points sont dits affinement indépendants, quand aucun des points P n'appartient au sous-espace affine engendré par les k autres points. Dans le cas contraire il est dit affinement lié.
Transformation de LegendreLa transformation de Legendre est une opération mathématique qui, schématiquement, transforme une fonction définie par sa valeur en un point en une fonction définie par sa tangente. Elle tire son nom du mathématicien Adrien-Marie Legendre. Les cas classiques d'utilisation de la transformation de Legendre se rencontrent en thermodynamique et en mécanique lagrangienne. En thermodynamique, elle permet de calculer le potentiel thermodynamique adapté à des conditions particulières.
Somme de MinkowskiEn géométrie, la somme de Minkowski est une opération sur les parties d'un espace vectoriel. À deux parties A et B elle associe leur ensemble somme, formé des sommes d'un élément de A et d'un élément de B : La somme de deux compacts est compacte. Il est ainsi possible de restreindre l'opération à cet ensemble, qui peut être muni d'une distance, dite de Hausdorff. La somme de Minkowski est alors une opération continue. De plus elle respecte les convexes, c'est-à-dire que la somme de deux convexes est encore convexe.