En mathématiques, une mesure de Haar sur un groupe localement compact est une mesure de Borel quasi-régulière non nulle invariante par translation à gauche. Autrement dit, pour toute partie borélienne B de G, et pour tout g dans G, on a : L'existence d'une mesure de Haar est assurée dans tout groupe localement compact. Elle est finie sur les parties compactes de G. De plus, toute mesure borélienne complexe invariante par translations à gauche s'écrit où est un nombre complexe. Bien qu'elle ne soit définie qu'à un coefficient multiplicateur près, de nombreux ouvrages parlent, par abus de langage, de la mesure de Haar. Cet usage est justifié pour un groupe compact ou pour un groupe discret, où des normalisations peuvent être effectuées. Sur un espace euclidien, la mesure de Lebesgue est l'unique mesure invariante par les isométries et valant 1 sur tout cube engendré par les vecteurs d'une base orthonormée. Invariante par translations, la mesure de Lebesgue est donc une mesure de Haar. Sa définition dépend cependant du choix de la structure euclidienne. Sur un groupe discret, la mesure de comptage est une mesure de Haar. Sur le groupe multiplicatif (R+*,×), la mesure est une mesure de Haar. Sur toute variété différentielle orientée M de dimension n, une n-forme différentielle définit une mesure sur M. Un groupe de Lie G est une variété différentielle munie d'une loi de groupe différentiable. Il est connu que G est parallélisable, a fortiori orientable : toute base de l'espace tangent définit par translation à gauche un champ de base invariant à gauche sur G. De fait, toute n-forme sur l'espace tangent définit une unique n-forme différentielle invariante par translation à gauche : la mesure borélienne correspondante est une mesure de Haar sur G. L'existence d'une mesure de Haar sur un groupe compact peut être déduite du théorème du point fixe de Kakutani. Comme le groupe G est compact, est finie, et quitte à effectuer une normalisation, il est possible de supposer de probabilité.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.