Summary
In mathematical logic, an ω-consistent (or omega-consistent, also called numerically segregative) theory is a theory (collection of sentences) that is not only (syntactically) consistent (that is, does not prove a contradiction), but also avoids proving certain infinite combinations of sentences that are intuitively contradictory. The name is due to Kurt Gödel, who introduced the concept in the course of proving the incompleteness theorem. A theory T is said to interpret the language of arithmetic if there is a translation of formulas of arithmetic into the language of T so that T is able to prove the basic axioms of the natural numbers under this translation. A T that interprets arithmetic is ω-inconsistent if, for some property P of natural numbers (defined by a formula in the language of T), T proves P(0), P(1), P(2), and so on (that is, for every standard natural number n, T proves that P(n) holds), but T also proves that there is some natural number n such that P(n) fails. This may not generate a contradiction within T because T may not be able to prove for any specific value of n that P(n) fails, only that there is such an n. In particular, such n is necessarily a nonstandard integer in any model for T (Quine has thus called such theories "numerically insegregative"). T is ω-consistent if it is not ω-inconsistent. There is a weaker but closely related property of Σ1-soundness. A theory T is Σ1-sound (or 1-consistent, in another terminology) if every Σ01-sentence provable in T is true in the standard model of arithmetic N (i.e., the structure of the usual natural numbers with addition and multiplication). If T is strong enough to formalize a reasonable model of computation, Σ1-soundness is equivalent to demanding that whenever T proves that a Turing machine C halts, then C actually halts. Every ω-consistent theory is Σ1-sound, but not vice versa. More generally, we can define an analogous concept for higher levels of the arithmetical hierarchy.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
ChE-403: Heterogeneous reaction engineering
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Show more