In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution) is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. The distribution is expressed in the form:
where pi is the probability of the system being in state i, exp is the exponential function, εi is the energy of that state, and a constant kT of the distribution is the product of the Boltzmann constant k and thermodynamic temperature T. The symbol denotes proportionality (see for the proportionality constant).
The term system here has a wide meaning; it can range from a collection of 'sufficient number' of atoms or a single atom to a macroscopic system such as a natural gas storage tank. Therefore the Boltzmann distribution can be used to solve a wide variety of problems. The distribution shows that states with lower energy will always have a higher probability of being occupied.
The ratio of probabilities of two states is known as the Boltzmann factor and characteristically only depends on the states' energy difference:
The Boltzmann distribution is named after Ludwig Boltzmann who first formulated it in 1868 during his studies of the statistical mechanics of gases in thermal equilibrium. Boltzmann's statistical work is borne out in his paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium"
The distribution was later investigated extensively, in its modern generic form, by Josiah Willard Gibbs in 1902.
The Boltzmann distribution should not be confused with the Maxwell–Boltzmann distribution or Maxwell-Boltzmann statistics. The Boltzmann distribution gives the probability that a system will be in a certain state as a function of that state's energy, while the Maxwell-Boltzmann distributions give the probabilities of particle speeds or energies in ideal gases.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The principal thermodynamic variable of the canonical ensemble, determining the probability distribution of states, is the absolute temperature (symbol: T).
The Boltzmann constant (kB or k) is the proportionality factor that relates the average relative thermal energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, and in Planck's law of black-body radiation and Boltzmann's entropy formula, and is used in calculating thermal noise in resistors. The Boltzmann constant has dimensions of energy divided by temperature, the same as entropy. It is named after the Austrian scientist Ludwig Boltzmann.
Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Ce cours est une introduction à la physique stellaire. On y expose les notions indispensables à la compréhension du fonctionnement d'une étoile et à la construction de modèles de structure interne et
The goal of this course is to illustrate how modern principles of basic science approaches are integrated into the major
biomedical imaging modalities of importance to biology and medicine, with an em
Autoregressive Neural Networks (ARNNs) have shown exceptional results in generation tasks across image, language, and scientific domains. Despite their success, ARNN architectures often operate as black boxes without a clear connection to underlying physic ...
Berlin2023
, ,
Efficient sampling and approximation of Boltzmann distributions involving large sets of binary variables, or spins, are pivotal in diverse scientific fields even beyond physics. Recent advances in generative neural networks have significantly impacted this ...
The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with ...