In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) refers to the possibility of interchanging the order of taking partial derivatives of a function
of n variables without changing the result under certain conditions (see below). The symmetry is the assertion that the second-order partial derivatives satisfy the identity
so that they form an n × n symmetric matrix, known as the function's Hessian matrix. Sufficient conditions for the above symmetry to hold are established by a result known as Schwarz's theorem, Clairaut's theorem, or Young's theorem.
In the context of partial differential equations it is called the Schwarz integrability condition.
In symbols, the symmetry may be expressed as:
Another notation is:
In terms of composition of the differential operator Di which takes the partial derivative with respect to xi:
From this relation it follows that the ring of differential operators with constant coefficients, generated by the Di, is commutative; but this is only true as operators over a domain of sufficiently differentiable functions. It is easy to check the symmetry as applied to monomials, so that one can take polynomials in the xi as a domain. In fact smooth functions are another valid domain.
The result on the equality of mixed partial derivatives under certain conditions has a long history. The list of unsuccessful proposed proofs started with Euler's, published in 1740, although already in 1721 Bernoulli had implicitly assumed the result with no formal justification. Clairaut also published a proposed proof in 1740, with no other attempts until the end of the 18th century. Starting then, for a period of 70 years, a number of incomplete proofs were proposed. The proof of Lagrange (1797) was improved by Cauchy (1823), but assumed the existence and continuity of the partial derivatives and . Other attempts were made by P. Blanchet (1841), Duhamel (1856), Sturm (1857), Schlömilch (1862), and Bertrand (1864).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, l'approximation de fonctions, intégration et dérivati
In mathematics, the Poincaré lemma gives a sufficient condition for a closed differential form to be exact (while an exact form is necessarily closed). Precisely, it states that every closed p-form on an open ball in Rn is exact for p with 1 ≤ p ≤ n. The lemma was introduced by Henri Poincaré in 1886. Especially in calculus, the Poincaré lemma also says that every closed 1-form on a simply connected open subset in is exact. In the language of cohomology, the Poincaré lemma says that the k-th de Rham cohomology group of a contractible open subset of a manifold M (e.
In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex.
In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative. It is named after Gottfried Leibniz.
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
New York2024
, ,
We develop a novel 2D functional learning framework that employs a sparsity-promoting regularization based on second-order derivatives. Motivated by the nature of the regularizer, we restrict the search space to the span of piecewise-linear box splines shi ...
We introduce a classification of the radial spin textures in momentum space that emerge at the high-symmetry points in crystals characterized by nonpolar chiral point groups (D2, D3, D4, D6, T, O). Based on the symmetry constraints imposed by these point g ...
Explores mathematical tools for differentials of functions of multiple variables and integrals, including conservative quantities and exact total differentials.