In telecommunications, a protocol data unit (PDU) is a single unit of information transmitted among peer entities of a computer network. It is composed of protocol-specific control information and user data. In the layered architectures of communication protocol stacks, each layer implements protocols tailored to the specific type or mode of data exchange.
For example, the Transmission Control Protocol (TCP) implements a connection-oriented transfer mode, and the PDU of this protocol is called a segment, while the User Datagram Protocol (UDP) uses datagrams as protocol data units for connectionless communication. A layer lower in the Internet protocol suite, at the Internet layer, the PDU is called a packet, irrespective of its payload type.
In the context of packet switching data networks, a protocol data unit (PDU) is best understood in relation to a service data unit (SDU).
The features or services of the network are implemented in distinct layers. The physical layer sends ones and zeros across a wire or fiber. The data link layer then organizes these ones and zeros into chunks of data and gets them safely to the right place on the wire. The network layer transmits the organized data over multiple connected networks, and the transport layer delivers the data to the right software application at the destination.
Between the layers (and between the application and the top-most layer), the layers pass service data units (SDUs) across interfaces. The higher layer understands the structure of the data in the SDU, but the lower layer at the interface does not; moreover, the lower layer treats the SDU as the payload, undertaking to get it to the same interface at the destination. In order to do this, the protocol (lower) layer will add to the SDU certain data it needs to perform its function; which is called encapsulation. For example, it might add a port number to identify the application, a network address to help with routing, a code to identify the type of data in the packet and error-checking information.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Les enjeux environnementaux doivent être abordés de façon systémique. L'Analyse du Cycle de Vie (ACV) et l'Analyse de Flux de Matière (AFM) sont des méthodes permettant d'évaluer de façon globale les
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing. The details of implementation and semantics of the transport layer of the Internet protocol suite, which is the foundation of the Internet, and the OSI model of general networking are different.
In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload. An Ethernet frame is preceded by a preamble and start frame delimiter (SFD), which are both part of the Ethernet packet at the physical layer. Each Ethernet frame starts with an Ethernet header, which contains destination and source MAC addresses as its first two fields.
Blockchain systems often rely on rationality assumptions for their security, expecting that nodes are motivated to maximize their profits. These systems thus design their protocols to incentivize nodes to execute the honest protocol but fail to consider ou ...
Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter ...
On the one hand, the web needs to be secured from malicious activities such as bots or DoS attacks; on the other hand, such needs ideally should not justify services tracking people's activities on the web. Anonymous tokens provide a nice tradeoff between ...