In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of the segment.
The shortest path problem can be defined for graphs whether undirected, directed, or mixed.
It is defined here for undirected graphs; for directed graphs the definition of path
requires that consecutive vertices be connected by an appropriate directed edge.
Two vertices are adjacent when they are both incident to a common edge.
A path in an undirected graph is a sequence of vertices
such that is adjacent to for .
Such a path is called a path of length
from to .
(The are variables; their numbering here relates to their position in the sequence and needs not to relate to any canonical labeling of the vertices.)
Let be the edge incident to both and . Given a real-valued weight function , and an undirected (simple) graph , the shortest path from to is the path (where and ) that over all possible minimizes the sum When each edge in the graph has unit weight or , this is equivalent to finding the path with fewest edges.
The problem is also sometimes called the single-pair shortest path problem, to distinguish it from the following variations:
The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph.
The single-destination shortest path problem, in which we have to find shortest paths from all vertices in the directed graph to a single destination vertex v. This can be reduced to the single-source shortest path problem by reversing the arcs in the directed graph.
The all-pairs shortest path problem, in which we have to find shortest paths between every pair of vertices v, v' in the graph.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
Dijkstra's algorithm (ˈdaɪkstrəz ) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later. The algorithm exists in many variants. Dijkstra's original algorithm found the shortest path between two given nodes, but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment wi ...
2023
, ,
Network neutrality is important for users, content providers, policymakers, and regulators interested in understanding how network providers differentiate performance. When determining whether a network differentiates against certain traffic, it is importa ...
2023
,
The increasing availability of Massive Open Online Courses (MOOCs) has created a necessity for personalized course recommendation systems. These systems often combine neural networks with Knowledge Graphs (KGs) to achieve richer representations of learners ...