Homeomorphism groupIn mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in the theory of topological spaces and in general are examples of automorphism groups. Homeomorphism groups are topological invariants in the sense that the homeomorphism groups of homeomorphic topological spaces are isomorphic as groups.
Banach manifoldIn mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions. A further generalisation is to Fréchet manifolds, replacing Banach spaces by Fréchet spaces. On the other hand, a Hilbert manifold is a special case of a Banach manifold in which the manifold is locally modeled on Hilbert spaces.
Absolute Galois groupIn mathematics, the absolute Galois group GK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When K is a perfect field, Ksep is the same as an algebraic closure Kalg of K. This holds e.g. for K of characteristic zero, or K a finite field.) The absolute Galois group of an algebraically closed field is trivial.
Continuous symmetryIn mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2 dimensional object in 3 dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.
Quantum groupIn mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
One-parameter groupIn mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism from the real line (as an additive group) to some other topological group . If is injective then , the image, will be a subgroup of that is isomorphic to as an additive group. One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates.
Cauchy spaceIn general topology and analysis, a Cauchy space is a generalization of metric spaces and uniform spaces for which the notion of Cauchy convergence still makes sense. Cauchy spaces were introduced by H. H. Keller in 1968, as an axiomatic tool derived from the idea of a Cauchy filter, in order to study completeness in topological spaces. The of Cauchy spaces and Cauchy continuous maps is Cartesian closed, and contains the category of proximity spaces. Throughout, is a set, denotes the power set of and all filters are assumed to be proper/non-degenerate (i.
Admissible representationIn mathematics, admissible representations are a well-behaved class of representations used in the representation theory of reductive Lie groups and locally compact totally disconnected groups. They were introduced by Harish-Chandra. Let G be a connected reductive (real or complex) Lie group. Let K be a maximal compact subgroup. A continuous representation (π, V) of G on a complex Hilbert space V is called admissible if π restricted to K is unitary and each irreducible unitary representation of K occurs in it with finite multiplicity.
Group objectIn , a branch of mathematics, group objects are certain generalizations of groups that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous. Formally, we start with a C with finite products (i.e. C has a terminal object 1 and any two of C have a ).
H-spaceIn mathematics, an H-space is a homotopy-theoretic version of a generalization of the notion of topological group, in which the axioms on associativity and inverses are removed. An H-space consists of a topological space X, together with an element e of X and a continuous map μ : X × X → X, such that μ(e, e) = e and the maps x ↦ μ(x, e) and x ↦ μ(e, x) are both homotopic to the identity map through maps sending e to e. This may be thought of as a pointed topological space together with a continuous multiplication for which the basepoint is an identity element up to basepoint-preserving homotopy.