Homeomorphism groupIn mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in the theory of topological spaces and in general are examples of automorphism groups. Homeomorphism groups are topological invariants in the sense that the homeomorphism groups of homeomorphic topological spaces are isomorphic as groups.
Banach manifoldIn mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions. A further generalisation is to Fréchet manifolds, replacing Banach spaces by Fréchet spaces. On the other hand, a Hilbert manifold is a special case of a Banach manifold in which the manifold is locally modeled on Hilbert spaces.
Groupe de Galois absoluEn mathématiques, le groupe de Galois absolu d'un corps commutatif K est le groupe de Galois d'une clôture séparable (extension algébrique séparable maximale, nécessairement normale donc galoisienne) Ksep du corps K. Dans le cas d'un corps parfait (et donc en particulier en caractéristique nulle), une clôture séparable coïncide avec une clôture algébrique. La compréhension du groupe de Galois absolu du corps des nombres rationnels est un problème important en théorie algébrique des nombres.
Continuous symmetryIn mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2 dimensional object in 3 dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.
Groupe quantiqueIn mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
Sous-groupe à un paramètreUn sous-groupe à un paramètre d'un groupe de Lie réel G est un morphisme de groupes de Lie c : R → G. Plus explicitement, c est une application différentiable vérifiant : En dérivant cette relation par rapport à la variable s et en évaluant en s = 0, il vient : où Lc(t) désigne la multiplication à gauche par c(t). Un sous-groupe à un paramètre s'obtient comme orbite de l'élément neutre par un champ de vecteurs invariant à gauche de G. Un tel champ X est déterminé par sa valeur X(e) en l'élément neutre e.
Cauchy spaceIn general topology and analysis, a Cauchy space is a generalization of metric spaces and uniform spaces for which the notion of Cauchy convergence still makes sense. Cauchy spaces were introduced by H. H. Keller in 1968, as an axiomatic tool derived from the idea of a Cauchy filter, in order to study completeness in topological spaces. The of Cauchy spaces and Cauchy continuous maps is Cartesian closed, and contains the category of proximity spaces. Throughout, is a set, denotes the power set of and all filters are assumed to be proper/non-degenerate (i.
Représentation admissibleEn mathématiques, les représentations admissibles forment une classe de représentations qui se comportent bien utilisée dans la théorie des représentations des groupes de Lie réductifs et des groupes localement compacts totalement discontinus. Elles ont été introduits par Harish-Chandra. Soit G un groupe de Lie connexe réductif réel ou complexe. Soit K un sous-groupe compact maximal. Une représentation continue (π, V ) de G sur un espace de Hilbert complexe V est dite admissible si la restriction de π à K est unitaire et si chaque représentation unitaire irréductible de K y figure avec une multiplicité finie.
Group objectIn , a branch of mathematics, group objects are certain generalizations of groups that are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuous. Formally, we start with a C with finite products (i.e. C has a terminal object 1 and any two of C have a ).
H-espaceEn mathématiques, un H-espace est une version d'une généralisation de la notion de groupe topologique, dans laquelle les axiomes d' sont supprimés. Un H-espace est constitué d'un espace topologique X, ainsi que d'un élément e de X et d'une application continue , tel que et les applications et sont toutes les deux homotopes à l'application identité relativement à e. Cet espace peut être considéré comme un espace topologique pointé avec une multiplication continue pour laquelle le point de base est un , à homotopie près préservant le point de base.