A latent variable model is a statistical model that relates a set of observable variables (also called manifest variables or indicators) to a set of latent variables.
It is assumed that the responses on the indicators or manifest variables are the result of an individual's position on the latent variable(s), and that the manifest variables have nothing in common after controlling for the latent variable (local independence).
Different types of the latent variable models can be grouped according to whether the manifest and latent variables are categorical or continuous:
The Rasch model represents the simplest form of item response theory. Mixture models are central to latent profile analysis.
In factor analysis and latent trait analysis the latent variables are treated as continuous normally distributed variables, and in latent profile analysis and latent class analysis as from a multinomial distribution. The manifest variables in factor analysis and latent profile analysis are continuous and in most cases, their conditional distribution given the latent variables is assumed to be normal. In latent trait analysis and latent class analysis, the manifest variables are discrete. These variables could be dichotomous, ordinal or nominal variables. Their conditional distributions are assumed to be binomial or multinomial.
Because the distribution of a continuous latent variable can be approximated by a discrete distribution, the distinction between continuous and discrete variables turns out not to be fundamental at all. Therefore, there may be a psychometrical latent variable, but not a psychological psychometric variable.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. For example, it is possible that variations in six observed variables mainly reflect the variations in two unobserved (underlying) variables. Factor analysis searches for such joint variations in response to unobserved latent variables.
Structural equation modeling (SEM) is a diverse set of methods used by scientists doing both observational and experimental research. SEM is used mostly in the social and behavioral sciences but it is also used in epidemiology, business, and other fields. A definition of SEM is difficult without reference to technical language, but a good starting place is the name itself. SEM involves a model representing how various aspects of some phenomenon are thought to causally connect to one another.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Measuring the intensity of events is crucial for monitoring and tracking armed conflict. Advances in automated event extraction have yielded massive data sets of '' who did what to whom '' micro-records that enable datadriven approaches to monitoring confl ...
Adopting healthy behaviors can prevent the onset of many adverse health conditions. However, behavior changes are difficult to make, and often, people who like to improve their behaviors do not know how to do that. Personalizable intervention systems could ...
We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed ...