Concept

Category of topological spaces

Related concepts (41)
Topos
In mathematics, a topos (USˈtɒpɒs, UKˈtoʊpoʊs,_ˈtoʊpɒs; plural topoi ˈtɒpɔɪ or ˈtoʊpɔɪ, or toposes) is a that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory.
Equaliser (mathematics)
In mathematics, an equaliser is a set of arguments where two or more functions have equal values. An equaliser is the solution set of an equation. In certain contexts, a difference kernel is the equaliser of exactly two functions. Let X and Y be sets. Let f and g be functions, both from X to Y. Then the equaliser of f and g is the set of elements x of X such that f(x) equals g(x) in Y. Symbolically: The equaliser may be denoted Eq(f, g) or a variation on that theme (such as with lowercase letters "eq").
Coproduct
In , the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic to the , which means the definition is the same as the product but with all arrows reversed.
Zero morphism
In , a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object. Suppose C is a , and f : X → Y is a morphism in C. The morphism f is called a constant morphism (or sometimes left zero morphism) if for any W in C and any g, h : W → X, fg = fh. Dually, f is called a coconstant morphism (or sometimes right zero morphism) if for any object Z in C and any g, h : Y → Z, gf = hf. A zero morphism is one that is both a constant morphism and a coconstant morphism.
Coequalizer
In , a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary . It is the categorical construction to the equalizer. A coequalizer is a colimit of the diagram consisting of two objects X and Y and two parallel morphisms f, g : X → Y. More explicitly, a coequalizer of the parallel morphisms f and g can be defined as an object Q together with a morphism q : Y → Q such that q ∘ f = q ∘ g.
Adjoint functors
In mathematics, specifically , adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e.
Complete category
In mathematics, a complete category is a in which all small s exist. That is, a category C is complete if every F : J → C (where J is ) has a limit in C. , a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a : for any two objects there can be at most one morphism from one object to the other.
Morphism
In mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.
Diagram (category theory)
In , a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a function from a fixed index set to the class of sets. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a functor from a fixed index category to some category.
Pullback (category theory)
In , a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the of a consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written P = X ×f, Z, g Y. Usually the morphisms f and g are omitted from the notation, and then the pullback is written P = X ×Z Y. The pullback comes equipped with two natural morphisms P → X and P → Y. The pullback of two morphisms f and g need not exist, but if it does, it is essentially uniquely defined by the two morphisms.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.