Topos (mathématiques)En mathématiques, un topos (au pluriel topos ou topoï) est un type particulier de catégorie. La théorie des topoï est polyvalente et est utilisée dans des domaines aussi variés que la logique, la topologie ou la géométrie algébrique. Un topos peut être défini comme une catégorie pourvue : de limites et colimites finies ; d'exponentielles ; d'un . D'autres définitions équivalentes sont données plus bas.
Égaliseur (mathématiques)L’égaliseur est une construction catégorique associée à deux morphismes parallèles, qui généralise en un certain sens la notion de noyau en algèbre. La construction duale, le coégaliseur peut s'interpréter comme une généralisation catégorique de la notion de quotient par une relation d'équivalence. On trouve parfois la variante égalisateur. Soit C une catégorie et deux objets X et Y de cette catégorie. Soient deux morphismes parallèles f et g entre ces objets : On dit qu'une flèche égalise la paire lorsque les morphismes composés coïncident.
Somme (catégorie)En mathématiques, dans une catégorie, la somme ou coproduit peut s'exprimer par une propriété universelle ou de manière équivalente comme foncteur représentable. Soit une catégorie et une famille d'objets de . On cherche un objet X ainsi qu'une famille de morphismes tel que pour tout objet Y de et pour toute famille de morphismes , il existe un unique morphisme tel que pour tout indice i, on a . Si un tel objet X existe, on l'appelle somme des . Lorsqu'elle existe, la somme des X représente le foncteur qui à un objet Y de associe le produit cartésien .
Morphisme zéroDans la théorie des catégories, une branche des mathématiques, un morphisme zéro est un type spécial de morphisme présentant certaines propriétés comme celles des morphismes vers et depuis un objet zéro . Supposons que C soit une catégorie, et f : X → Y un morphisme de la catégorie C. Le morphisme f est appelé morphisme constant (ou encore morphisme zéro à gauche) si pour tout objet W de la catégorie C et tout morphisme de cette catégorie , on a fg = fh.
CoequalizerIn , a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary . It is the categorical construction to the equalizer. A coequalizer is a colimit of the diagram consisting of two objects X and Y and two parallel morphisms f, g : X → Y. More explicitly, a coequalizer of the parallel morphisms f and g can be defined as an object Q together with a morphism q : Y → Q such that q ∘ f = q ∘ g.
Foncteur adjointL'adjonction est une situation omniprésente en mathématiques, et formalisée en théorie des catégories par la notion de foncteurs adjoints. Une adjonction entre deux catégories et est une paire de deux foncteurs et vérifiant que, pour tout objet X dans C et Y dans D, il existe une bijection entre les ensembles de morphismes correspondants et la famille de bijections est naturelle en X et Y. On dit que F et G sont des foncteurs adjoints et plus précisément, que F est « adjoint à gauche de G » ou que G est « adjoint à droite de F ».
Catégorie complèteEn mathématiques, une catégorie complète est une catégorie dans laquelle toutes les petites limites existent. Autrement dit, une catégorie C est complète si tout diagramme F : J → C (où J est petite) a une limite dans C. Duallement, une catégorie cocomplète est une catégorie dans laquelle toutes les petites colimites existent. Une catégorie bicomplète est une catégorie à la fois complète et cocomplète. L'existence de toutes les limites (même lorsque J est une classe propre) est trop forte pour être pertinente en pratique.
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
Diagramme (théorie des catégories)En théorie des catégories, un diagramme est une collection d'objets et de flèches d'une catégorie donnée. En principe, un diagramme n'est pas un objet mathématique mais seulement une figure, destinée à faciliter la lecture d'un raisonnement. En pratique, on se sert souvent des diagrammes comme de symboles abréviateurs, qui évitent de nommer tous les objets et les flèches que l'on veut considérer; on dit souvent que "considérons le diagramme ci-dessus" au lieu de dire par exemple dans la catégorie des ensembles: "considérons quatre ensembles et une application de dans .
Produit fibréEn mathématiques, le produit fibré est une opération entre deux ensembles munis tous deux d'une application vers un même troisième ensemble. Sa définition s'étend à certaines catégories en satisfaisant une propriété universelle de factorisation de diagrammes, en dualité avec la somme amalgamée. Le produit fibré est utilisé notamment en géométrie algébrique pour définir le produit de deux schémas, ou en topologie algébrique pour construire, à partir d'un espace fibré (tel un revêtement), un autre espace de même fibre, le , en remontant le long d'une application entre les deux bases, d'où l'appellation en anglais pullback (« tiré en arrière ») parfois utilisée en français.