Concept

Category of topological spaces

Related concepts (41)
Wedge sum
In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if X and Y are pointed spaces (i.e. topological spaces with distinguished basepoints and ) the wedge sum of X and Y is the quotient space of the disjoint union of X and Y by the identification where is the equivalence closure of the relation More generally, suppose is a indexed family of pointed spaces with basepoints The wedge sum of the family is given by: where is the equivalence closure of the relation In other words, the wedge sum is the joining of several spaces at a single point.
Complete Heyting algebra
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the of three different ; the category CHey, the category Loc of locales, and its , the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
Category of sets
In the mathematical field of , the category of sets, denoted as Set, is the whose are sets. The arrows or morphisms between sets A and B are the total functions from A to B, and the composition of morphisms is the composition of functions. Many other categories (such as the , with group homomorphisms as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind.
Sober space
In mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point. Sober spaces have a variety of cryptomorphic definitions, which are documented in this section. All except the definition in terms of nets are described in. In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom.
Subcategory
In mathematics, specifically , a subcategory of a C is a category S whose are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows. Let C be a category. A subcategory S of C is given by a subcollection of objects of C, denoted ob(S), a subcollection of morphisms of C, denoted hom(S).
Cone (category theory)
In , a branch of mathematics, the cone of a functor is an abstract notion used to define the of that functor. Cones make other appearances in category theory as well. Let F : J → C be a in C. Formally, a diagram is nothing more than a functor from J to C. The change in terminology reflects the fact that we think of F as indexing a family of and morphisms in C. The J is thought of as an "index category". One should consider this in analogy with the concept of an indexed family of objects in set theory.
Monomorphism
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation . In the more general setting of , a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow f : X → Y such that for all objects Z and all morphisms g1, g2: Z → X, Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below.
Fiber (mathematics)
In mathematics, the term fiber (US English) or fibre (British English) can have two meanings, depending on the context: In naive set theory, the fiber of the element in the set under a map is the of the singleton under In algebraic geometry, the notion of a fiber of a morphism of schemes must be defined more carefully because, in general, not every is closed. Let be a function between sets. The fiber of an element (or fiber over ) under the map is the set that is, the set of elements that get mapped to by the function.
Singleton (mathematics)
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set is a singleton whose single element is . Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and {1} are not the same thing, and the empty set is distinct from the set containing only the empty set.
Suspension (topology)
In topology, a branch of mathematics, the suspension of a topological space X is intuitively obtained by stretching X into a cylinder and then collapsing both end faces to points. One views X as "suspended" between these end points. The suspension of X is denoted by SX or susp(X). There is a variation of the suspension for pointed space, which is called the reduced suspension and denoted by ΣX. The "usual" suspension SX is sometimes called the unreduced suspension, unbased suspension, or free suspension of X, to distinguish it from ΣX.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.