Bouquet (mathématiques)In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if X and Y are pointed spaces (i.e. topological spaces with distinguished basepoints and ) the wedge sum of X and Y is the quotient space of the disjoint union of X and Y by the identification where is the equivalence closure of the relation More generally, suppose is a indexed family of pointed spaces with basepoints The wedge sum of the family is given by: where is the equivalence closure of the relation In other words, the wedge sum is the joining of several spaces at a single point.
Complete Heyting algebraIn mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the of three different ; the category CHey, the category Loc of locales, and its , the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
Sober spaceIn mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point. Sober spaces have a variety of cryptomorphic definitions, which are documented in this section. All except the definition in terms of nets are described in. In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom.
SubcategoryIn mathematics, specifically , a subcategory of a C is a category S whose are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows. Let C be a category. A subcategory S of C is given by a subcollection of objects of C, denoted ob(S), a subcollection of morphisms of C, denoted hom(S).
Cone (category theory)In , a branch of mathematics, the cone of a functor is an abstract notion used to define the of that functor. Cones make other appearances in category theory as well. Let F : J → C be a in C. Formally, a diagram is nothing more than a functor from J to C. The change in terminology reflects the fact that we think of F as indexing a family of and morphisms in C. The J is thought of as an "index category". One should consider this in analogy with the concept of an indexed family of objects in set theory.
MonomorphismeDans le cadre de l'algèbre générale ou de l'algèbre universelle, un monomorphisme est simplement un morphisme injectif. Dans le cadre plus général de la théorie des catégories, un monomorphisme est un morphisme simplifiable à gauche, c'est-à-dire un morphisme tel que pour tout , ou encore : l'application Les monomorphismes sont la généralisation aux catégories des fonctions injectives ; dans certaines catégories, les deux notions coïncident d'ailleurs. Mais les monomorphismes restent des objets plus généraux (voir l'exemple ci-dessous).
Fiber (mathematics)In mathematics, the term fiber (US English) or fibre (British English) can have two meanings, depending on the context: In naive set theory, the fiber of the element in the set under a map is the of the singleton under In algebraic geometry, the notion of a fiber of a morphism of schemes must be defined more carefully because, in general, not every is closed. Let be a function between sets. The fiber of an element (or fiber over ) under the map is the set that is, the set of elements that get mapped to by the function.
Singleton (mathématiques)En mathématiques, un singleton est un ensemble qui comprend exactement un élément. Le singleton dont l'élément est a se note . Soit S une classe définie par une fonction indicatrice alors S est un singleton si et seulement s’il existe y ∈ X tel que pour tout x ∈ X, La définition suivante vient de Alfred North Whitehead et Russell Le symbole ι'x désigne le singleton {x} et désigne la classe des objets identiques à x, soit l'ensemble {y / y = x}.
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.