Telophase () is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase (the nucleolus and nuclear membrane disintegrating) are reversed. As chromosomes reach the cell poles, a nuclear envelope is re-assembled around each set of chromatids, the nucleoli reappear, and chromosomes begin to decondense back into the expanded chromatin that is present during interphase. The mitotic spindle is disassembled and remaining spindle microtubules are depolymerized. Telophase accounts for approximately 2% of the cell cycle's duration. Cytokinesis typically begins before late telophase and, when complete, segregates the two daughter nuclei between a pair of separate daughter cells. Telophase is primarily driven by the dephosphorylation of mitotic cyclin-dependent kinase (Cdk) substrates. The phosphorylation of the protein targets of M-Cdks (Mitotic Cyclin-dependent Kinases) drives spindle assembly, chromosome condensation and nuclear envelope breakdown in early mitosis. The dephosphorylation of these same substrates drives spindle disassembly, chromosome decondensation and the reformation of daughter nuclei in telophase. Establishing a degree of dephosphorylation permissive to telophase events requires both the inactivation of Cdks and the activation of phosphatases. Cdk inactivation is primarily the result of the destruction of its associated cyclin. Cyclins are targeted for proteolytic degradation by the anaphase promoting complex (APC), also known as the cyclosome, a ubiquitin-ligase. The active, CDC20-bound APC (APC/CCDC20) targets mitotic cyclins for degradation starting in anaphase. Experimental addition of non-degradable M-cyclin to cells induces cell cycle arrest in a post-anaphase/pre-telophase-like state with condensed chromosomes segregated to cell poles, an intact mitotic spindle, and no reformation of the nuclear envelope. This has been shown in frog (Xenopus) eggs, fruit flies (Drosophilla melanogaster), budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast, and in multiple human cell lines.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (5)
BIOENG-110: General Biology
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
BIO-105: Cellular biology and biochemistry for engineers
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
BIO-221: Cell and developmental biology for engineers
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal systems and quantitative approaches.
Show more
Related lectures (23)
Mitosis and Cell Cycle
Explains the process of mitosis and the cell cycle phases.
Maternal-to-zygotic Transition
Explores the Maternal-to-zygotic Transition in early embryos, discussing key factors and processes influencing development.
DNA Replication: Sister Chromatids Cohesion
Explores DNA replication in eukaryotes and the cohesion of sister chromatids.
Show more
Related publications (95)

Single-mitosis dissection of acute and chronic DNA mutagenesis and repair

Christina Ernst

How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, dur ...
Nature Portfolio2024

Control of nuclear envelope dynamics during acute ER stress by LINC complexes disassembly and selective, asymmetric autophagy of the outer nuclear membrane

Maurizio Molinari

The endoplasmic reticulum (ER) extends to the outer (ONM) and the inner (INM) nuclear membrane forming the nuclear envelope (NE) that delimits the nucleoplasm containing the cell genome. Unfolded protein responses (UPRs) and reticulophagy responses increas ...
Philadelphia2024

Deciphering the molecular events leading to the global restoration of the chromatin landscape during mitotic exit

Silja Michelle Placzek

Two fundamental properties of embryonic stem cells (ESCs) are their ability to self-renew and differentiate into all somatic cell types. Maintenance of their identity faces major challenges when transitioning through mitosis, as most DNA-binding proteins a ...
EPFL2023
Show more
Related concepts (20)
Cleavage furrow
In cell biology, the cleavage furrow is the indentation of the cell's surface that begins the progression of cleavage, by which animal and some algal cells undergo cytokinesis, the final splitting of the membrane, in the process of cell division. The same proteins responsible for muscle contraction, actin and myosin, begin the process of forming the cleavage furrow, creating an actomyosin ring. Other cytoskeletal proteins and actin binding proteins are involved in the procedure.
Kinetochore
A kinetochore (kᵻˈnɛtəkɔər, -ˈniːtəkɔər) is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis. The term kinetochore was first used in a footnote in a 1934 Cytology book by Lester W. Sharp and commonly accepted in 1936.
Prophase
Prophase () is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin reticulum and the disappearance of the nucleolus. Microscopy can be used to visualize condensed chromosomes as they move through meiosis and mitosis. Various DNA stains are used to treat cells such that condensing chromosomes can be visualized as the move through prophase.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.