Earth ellipsoidAn Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations. It is a spheroid (an ellipsoid of revolution) whose minor axis (shorter diameter), which connects the geographical North Pole and South Pole, is approximately aligned with the Earth's axis of rotation.
Gravity anomalyThe gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression. However, the Earth has a rugged surface and non-uniform composition, which distorts its gravitational field.
Vertical deflectionThe vertical deflection (VD) or deflection of the vertical (DoV), also known as deflection of the plumb line and astro-geodetic deflection, is a measure of how far the gravity direction at a given point of interest is rotated by local mass anomalies such as nearby mountains. They are widely used in geodesy, for surveying networks and for geophysical purposes. The vertical deflection are the angular components between the true zenith–nadir curve (plumb line) tangent line and the normal vector to the surface of the reference ellipsoid (chosen to approximate the Earth's sea-level surface).
Standard gravityThe standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by ɡ0 or ɡn, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is defined by standard as . This value was established by the 3rd General Conference on Weights and Measures (1901, CR 70) and used to define the standard weight of an object as the product of its mass and this nominal acceleration.
GravimetryGravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. Gravity is usually measured in units of acceleration. In the SI system of units, the standard unit of acceleration is 1 metre per second squared (abbreviated as m/s2). Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (gn), equal to 9.
Earth's inner coreEarth's inner core is the innermost geologic layer of planet Earth. It is primarily a solid ball with a radius of about , which is about 20% of Earth's radius or 70% of the Moon's radius. There are no samples of Earth's core accessible for direct measurement, as there are for Earth's mantle. Information about Earth's core mostly comes from analysis of seismic waves and Earth's magnetic field. The inner core is believed to be composed of an iron–nickel alloy with some other elements.
Equatorial bulgeAn equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere. Earth ellipsoid The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about greater than its polar diameter, with a difference of about of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of , that difference would be only .
Geodetic coordinatesGeodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) φ, longitude (east/west) λ, and ellipsoidal height h (also known as geodetic height). The triad is also known as Earth ellipsoidal coordinates (not to be confused with ellipsoidal-harmonic coordinates). Longitude measures the rotational angle between the zero meridian and the measured point. By convention for the Earth, Moon and Sun, it is expressed in degrees ranging from −180° to +180°.
Planetary sciencePlanetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history.
Earth massAn Earth mass (denoted as or , where ⊕ is the standard astronomical symbol for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is , with a relative uncertainty of 10−4. It is equivalent to an average density of 5,515kg/m3. Using the nearest metric prefix, the Earth mass is approximately six ronnagrams, or 6.0 Rg. The Earth mass is a standard unit of mass in astronomy that is used to indicate the masses of other planets, including rocky terrestrial planets and exoplanets.