In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely (usually decaying). The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-order discrete-time FIR filter lasts exactly samples (from first nonzero element through last nonzero element) before it then settles to zero. FIR filters can be discrete-time or continuous-time, and digital or analog. For a causal discrete-time FIR filter of order N, each value of the output sequence is a weighted sum of the most recent input values: where: is the input signal, is the output signal, is the filter order; an th-order filter has terms on the right-hand side is the value of the impulse response at the ith instant for of an -order FIR filter. If the filter is a direct form FIR filter then is also a coefficient of the filter. This computation is also known as discrete convolution. The in these terms are commonly referred to as s, based on the structure of a tapped delay line that in many implementations or block diagrams provides the delayed inputs to the multiplication operations. One may speak of a 5th order/6-tap filter, for instance. The impulse response of the filter as defined is nonzero over a finite duration. Including zeros, the impulse response is the infinite sequence: If an FIR filter is non-causal, the range of nonzero values in its impulse response can start before , with the defining formula appropriately generalized. An FIR filter has a number of useful properties which sometimes make it preferable to an infinite impulse response (IIR) filter. FIR filters: Require no feedback. This means that any rounding errors are not compounded by summed iterations. The same relative error occurs in each calculation. This also makes implementation simpler.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
EE-550: Image and video processing
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
COM-303: Signal processing for communications
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
Show more
Related publications (185)
Related concepts (27)
Discrete-time Fourier transform
In mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Digital filter
In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is typically an electronic circuit operating on continuous-time analog signals. A digital filter system usually consists of an analog-to-digital converter (ADC) to sample the input signal, followed by a microprocessor and some peripheral components such as memory to store data and filter coefficients etc.
Filter (signal processing)
In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of many other targets for filtering exist.
Show more
Related MOOCs (6)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.