Summary
An optical modulator is a device which is used to modulate a beam of light. The beam may be carried over free space, or propagated through an optical waveguide (optical fibre). Depending on the parameter of a light beam which is manipulated, modulators may be categorized into amplitude modulators, phase modulators, polarization modulators etc. Often the easiest way to obtain modulation of intensity of a light beam, is to modulate the current driving the light source, e.g. a laser diode. This sort of modulation is called direct modulation, as opposed to the external modulation performed by a light modulator. For this reason light modulators are, e.g. in fiber optic communications, called external light modulators. With laser diodes where narrow linewidth is required, direct modulation is avoided due to a high bandwidth "chirping" effect when applying and removing the current to the laser. Optical modulators are used with superconductors which work properly only at low temperatures, generally just above absolute zero. Optical modulators convert information carried by an electric current in an electromagnet into light. According to the properties of the material that are used to modulate the light beam, modulators are divided into two groups: absorptive modulators and refractive modulators. In absorptive modulators the absorption coefficient of the material is changed, in refractive modulators the refractive index of the material is changed. The absorption coefficient of the material in the modulator can be manipulated by the Franz–Keldysh effect, the Quantum-confined Stark effect, excitonic absorption, changes of Fermi level, or changes of free carrier concentration. Usually, if several such effects appear together, the modulator is called an electro-absorptive modulator. Refractive modulators most often make use of an electro-optic effect. Some modulators utilize an acousto-optic effect or magneto-optic effect or take advantage of polarization changes in liquid crystals. The refractive modulators are named by the respective effect: i.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-501: Nonlinear Optics
Basic principles of optics
MICRO-504: Photonic micro- and nanosystems
This course aims at providing engineering and design guidelines for selected Photonic Micro- and Nanosystems. In particular, Optical MEMS and Integrated Photonics are reviewed. Standard fabrication pr
Related lectures (1)
3D Printing with Optical Fibers
Explores 3D printing with laser technologies and optical fibers, showcasing high-resolution printing techniques and challenges.
Related publications (43)