Zen is the codename for a family of computer processor microarchitectures from AMD, first launched in February 2017 with the first generation of its Ryzen CPUs. It is used in Ryzen (desktop and mobile), Ryzen Threadripper (workstation/high end desktop), and Epyc (server).
Zen (first generation)
The first generation Zen was launched with the Ryzen 1000 series of CPUs (codenamed Summit Ridge) in February 2017. The first Zen-based preview system was demonstrated at E3 2016, and first substantially detailed at an event hosted a block away from the Intel Developer Forum 2016. The first Zen-based CPUs reached the market in early March 2017, and Zen-derived Epyc server processors (codenamed "Naples") launched in June 2017 and Zen-based APUs (codenamed "Raven Ridge") arrived in November 2017. This first iteration of Zen utilized GlobalFoundries' 14 nm manufacturing process.
Zen+
Zen+ was first released in April 2018, powering the second generation of Ryzen processors, known as Ryzen 2000 (codenamed "Pinnacle Ridge") for mainstream desktop systems, and Threadripper 2000 (codenamed "Colfax") for high-end desktop setups. Zen+ used GlobalFoundries' 12 nm process, an enhanced version of their 14 nm node.
Zen 2
The Ryzen 3000 series CPUs were released on July 7, 2019, while the Zen 2-based Epyc server CPUs (codename "Rome") were released on August 7, 2019. Zen 2 Matisse products were the first consumer CPUs to use TSMC's 7 nm process node. Zen 2 introduced the chiplet based architecture, where desktop, workstation, and server CPUs are all produced as multi-chip modules (MCMs); these Zen 2 products utilise the same core chiplets but are attached to different uncore silicon (different IO dies) in a hub and spoke topology. This approach differs from Zen 1 products, where the same die (Zeppelin) is used in a simple monolithic package for Summit Ridge products (Ryzen 1000 series) or used as interconnected building blocks in an MCM (up to four Zeppelin dies) for first generation Epyc and Threadripper products.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Zen 2 is a computer processor microarchitecture by AMD. It is the successor of AMD's Zen and Zen+ microarchitectures, and is fabricated on the 7 nm MOSFET node from TSMC. The microarchitecture powers the third generation of Ryzen processors, known as Ryzen 3000 for the mainstream desktop chips (codename "Matisse"), Ryzen 4000U/H (codename "Renoir") and Ryzen 5000U (codename "Lucienne") for mobile applications, as Threadripper 3000 for high-end desktop systems, and as Ryzen 4000G for accelerated processing units (APUs).
Ryzen (ˈraɪzən ) is a brand of multi-core x86-64 microprocessors designed and marketed by AMD for desktop, mobile, server, and embedded platforms based on the Zen microarchitecture. It consists of central processing units (CPUs) marketed for mainstream, enthusiast, server, and workstation segments and accelerated processing units (APUs) marketed for mainstream and entry-level segments and embedded systems applications. AMD announced a new series of processors on December 13, 2016, named "Ryzen", and delivered them in Q1 2017, the first of several generations.
Epyc is a brand of multi-core x86-64 microprocessors designed and sold by AMD, based on the company's Zen microarchitecture. Introduced in June 2017, they are specifically targeted for the server and embedded system markets. Epyc processors share the same microarchitecture as their regular desktop-grade counterparts, but have enterprise-grade features such as higher core counts, more PCI Express lanes, support for larger amounts of RAM, and larger cache memory.
Explores a neuromodulation system for deep brain stimulation, featuring a BrainForest classifier and a neuromodulation SoC with an 8-channel ADC array.
Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a mu ...
2017
, , ,
In this work, we propose and investigate the high performance and low power design space of non-hysteretic negative capacitance MOSFETs for the 14nm node based on the calibrated simulations using an experimental gate stack with PZT ferroelectric to obtain ...
2016
, , , ,
Multi-Chiplet architectures are being increasingly adopted to support the design of very large systems in a single package, facilitating the integration of heterogeneous components and improving manufacturing yield. However, chiplet-based solutions have to ...